fastjet 2.4.5
SearchTree.hh
Go to the documentation of this file.
00001 //STARTHEADER
00002 // $Id: SearchTree.hh 3157 2013-07-11 16:02:51Z soyez $
00003 //
00004 // Copyright (c) 2005-2006, Matteo Cacciari and Gavin Salam
00005 //
00006 //----------------------------------------------------------------------
00007 // This file is part of FastJet.
00008 //
00009 //  FastJet is free software; you can redistribute it and/or modify
00010 //  it under the terms of the GNU General Public License as published by
00011 //  the Free Software Foundation; either version 2 of the License, or
00012 //  (at your option) any later version.
00013 //
00014 //  The algorithms that underlie FastJet have required considerable
00015 //  development and are described in hep-ph/0512210. If you use
00016 //  FastJet as part of work towards a scientific publication, please
00017 //  include a citation to the FastJet paper.
00018 //
00019 //  FastJet is distributed in the hope that it will be useful,
00020 //  but WITHOUT ANY WARRANTY; without even the implied warranty of
00021 //  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00022 //  GNU General Public License for more details.
00023 //
00024 //  You should have received a copy of the GNU General Public License
00025 //  along with FastJet; if not, write to the Free Software
00026 //  Foundation, Inc.:
00027 //      59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
00028 //----------------------------------------------------------------------
00029 //ENDHEADER
00030 
00031 
00032 #ifndef __FASTJET_SEARCHTREE_HH__
00033 #define __FASTJET_SEARCHTREE_HH__
00034 
00035 #include<vector>
00036 #include<cassert>
00037 #include<cstddef>
00038 #include "fastjet/internal/base.hh"
00039 
00040 FASTJET_BEGIN_NAMESPACE      // defined in fastjet/internal/base.hh
00041 
00042 
00043 //======================================================================
00048 template<class T> class SearchTree {
00049 public:
00050 
00051   class Node;
00052   class circulator;
00053   class const_circulator;
00054 
00056   SearchTree(const std::vector<T> & init);
00057 
00060   SearchTree(const std::vector<T> & init, unsigned int max_size);
00061 
00063   void remove(unsigned node_index);
00064   void remove(typename SearchTree::Node * node);
00065   void remove(typename SearchTree::circulator & circ);
00066 
00069   //Node * insert(const T & value);
00070   circulator insert(const T & value);
00071 
00072   const Node & operator[](int i) const {return _nodes[i];};
00073 
00075   unsigned int size() const {return _nodes.size() - _available_nodes.size();}
00076 
00078   void verify_structure();
00079   void verify_structure_linear() const;
00080   void verify_structure_recursive(const Node * , const Node * , const Node * ) const;
00081 
00083   void print_elements();
00084 
00085   // tracking the depth may have some speed overhead -- so leave it 
00086   // out for the time being...
00087 #ifdef TRACK_DEPTH
00088 
00089   inline unsigned int max_depth() const {return _max_depth;};
00090 #else
00091   inline unsigned int max_depth() const {return 0;};
00092 #endif
00093 
00094   int loc(const Node * node) const ;
00095 
00097   Node * _find_predecessor(const Node *);
00099   Node * _find_successor(const Node *);
00100 
00101   const Node & operator[](unsigned int i) const {return _nodes[i];};
00102 
00105   const_circulator somewhere() const;
00106   circulator somewhere();
00107 
00108 private:
00109   
00110   void _initialize(const std::vector<T> & init);
00111 
00112   std::vector<Node> _nodes;
00113   std::vector<Node *> _available_nodes;
00114   Node * _top_node;
00115   unsigned int _n_removes;
00116 
00117   
00122   void _do_initial_connections(unsigned int this_one, unsigned int scale,
00123                                unsigned int left_edge, unsigned int right_edge,
00124                                unsigned int depth);
00125 
00126   
00127 #ifdef TRACK_DEPTH
00128   unsigned int _max_depth;
00129 #endif
00130 
00131 };
00132 
00133 
00134 //======================================================================
00135 template<class T> class SearchTree<T>::Node{
00136 public:
00137   Node() {}; 
00138   
00139   
00141   bool treelinks_null() const {
00142     return ((parent==0) && (left==0) && (right==0));};
00143   
00145   inline void nullify_treelinks() {
00146     parent = NULL; 
00147     left   = NULL; 
00148     right  = NULL;
00149   };
00150   
00153   void reset_parents_link_to_me(Node * XX);
00154   
00155   T      value;
00156   Node * left;
00157   Node * right;
00158   Node * parent;
00159   Node * successor;
00160   Node * predecessor;
00161 };
00162 
00163 //----------------------------------------------------------------------
00164 template<class T> void SearchTree<T>::Node::reset_parents_link_to_me(typename SearchTree<T>::Node * XX) {
00165   if (parent == NULL) {return;}
00166   if (parent->right == this) {parent->right = XX;}
00167   else {parent->left = XX;}
00168 }
00169 
00170 
00171 
00172 //======================================================================
00173 template<class T> class SearchTree<T>::circulator{
00174 public:
00175 
00176   // so that it can access out _node object;
00177   // note: "class U" needed for clang (v1.1 branches/release_27) compilation
00178   template<class U> friend class SearchTree<U>::const_circulator;
00179   friend class SearchTree<T>;
00180 
00181   circulator() : _node(NULL) {}
00182 
00183   circulator(Node * node) : _node(node) {}
00184 
00185   const T * operator->() const {return &(_node->value);}
00186   T * operator->() {return &(_node->value);}
00187   const T & operator*() const {return _node->value;}
00188   T & operator*() {return _node->value;}
00189 
00191   circulator & operator++() {
00192     _node = _node->successor; 
00193     return *this;}
00194 
00197   circulator operator++(int) {
00198     circulator tmp = *this;
00199     _node = _node->successor; 
00200     return tmp;}
00201 
00203   circulator & operator--() {
00204     _node = _node->predecessor; 
00205     return *this;}
00206 
00209   circulator operator--(int) {
00210     circulator tmp = *this;
00211     _node = _node->predecessor; 
00212     return tmp;}
00213 
00215   circulator next() const {
00216     return circulator(_node->successor);}
00217 
00219   circulator previous() const {
00220     return circulator(_node->predecessor);}
00221 
00222   bool operator!=(const circulator & other) const {return other._node != _node;}
00223   bool operator==(const circulator & other) const {return other._node == _node;}
00224 
00225 private:
00226   Node * _node;
00227 };
00228 
00229 
00230 //======================================================================
00231 template<class T> class SearchTree<T>::const_circulator{
00232 public:
00233 
00234   const_circulator() : _node(NULL) {}
00235 
00236   const_circulator(const Node * node) : _node(node) {}
00237   const_circulator(const circulator & circ) :_node(circ._node) {}
00238 
00239   const T * operator->() {return &(_node->value);}
00240   const T & operator*() const {return _node->value;}
00241 
00243   const_circulator & operator++() {
00244     _node = _node->successor; 
00245     return *this;}
00246 
00249   const_circulator operator++(int) {
00250     const_circulator tmp = *this;
00251     _node = _node->successor; 
00252     return tmp;}
00253 
00254 
00256   const_circulator & operator--() {
00257     _node = _node->predecessor; 
00258     return *this;}
00259 
00262   const_circulator operator--(int) {
00263     const_circulator tmp = *this;
00264     _node = _node->predecessor; 
00265     return tmp;}
00266 
00268   const_circulator next() const {
00269     return const_circulator(_node->successor);}
00270 
00272   const_circulator previous() const {
00273     return const_circulator(_node->predecessor);}
00274 
00275 
00276 
00277   bool operator!=(const const_circulator & other) const {return other._node != _node;}
00278   bool operator==(const const_circulator & other) const {return other._node == _node;}
00279 
00280 private:
00281   const Node * _node;
00282 };
00283 
00284 
00285 
00286 
00287 //----------------------------------------------------------------------
00290 template<class T> SearchTree<T>::SearchTree(const std::vector<T> & init,
00291                                             unsigned int max_size) :
00292   _nodes(max_size) {
00293 
00294   _available_nodes.reserve(max_size);
00295   _available_nodes.resize(max_size - init.size());
00296   for (unsigned int i = init.size(); i < max_size; i++) {
00297     _available_nodes[i-init.size()] = &(_nodes[i]);
00298   }
00299 
00300   _initialize(init);
00301 }
00302 
00303 //----------------------------------------------------------------------
00305 template<class T> SearchTree<T>::SearchTree(const std::vector<T> & init) :
00306   _nodes(init.size()), _available_nodes(0) {
00307 
00308   // reserve space for the list of available nodes
00309   _available_nodes.reserve(init.size());
00310   _initialize(init);
00311 }
00312 
00313 //----------------------------------------------------------------------
00315 template<class T> void SearchTree<T>::_initialize(const std::vector<T> & init) {
00316 
00317   _n_removes = 0;
00318   unsigned n = init.size();
00319   assert(n>=1);
00320 
00321   // reserve space for the list of available nodes
00322   //_available_nodes.reserve();
00323 
00324 #ifdef TRACK_DEPTH
00325   _max_depth     = 0;
00326 #endif
00327 
00328 
00329   // validate the input
00330   for (unsigned int i = 1; i<n; i++) {
00331     assert(!(init[i] < init[i-1]));
00332   }
00333   
00334   // now initialise the vector; link neighbours in the sequence
00335   for(unsigned int i = 0; i < n; i++) {
00336     _nodes[i].value = init[i];
00337     _nodes[i].predecessor = (& (_nodes[i])) - 1;
00338     _nodes[i].successor   = (& (_nodes[i])) + 1;
00339     _nodes[i].nullify_treelinks();
00340   }
00341   // make a loop structure so that we can circulate...
00342   _nodes[0].predecessor = (& (_nodes[n-1]));
00343   _nodes[n-1].successor = (& (_nodes[0]));
00344 
00345   // now label the rest of the nodes
00346   unsigned int scale = (n+1)/2;
00347   unsigned int top   = std::min(n-1,scale);
00348   _nodes[top].parent = NULL;
00349   _top_node = &(_nodes[top]);
00350   _do_initial_connections(top, scale, 0, n, 0);
00351 
00352   // make sure things are sensible...
00353   //verify_structure();
00354 }
00355 
00356 
00357 
00358 //----------------------------------------------------------------------
00359 template<class T> inline  int SearchTree<T>::loc(const Node * node) const {return node == NULL? 
00360       -999 : node - &(_nodes[0]);}
00361 
00362 
00363 //----------------------------------------------------------------------
00366 template<class T> void SearchTree<T>::_do_initial_connections(
00367                                          unsigned int this_one, 
00368                                          unsigned int scale,
00369                                          unsigned int left_edge,
00370                                          unsigned int right_edge,
00371                                          unsigned int depth
00372                                          ) {
00373 
00374 #ifdef TRACK_DEPTH
00375   // keep track of tree depth for checking things stay reasonable...
00376   _max_depth = max(depth, _max_depth);
00377 #endif
00378 
00379   //std::cout << this_one << " "<< scale<< std::endl;
00380   unsigned int ref_new_scale = (scale+1)/2;
00381 
00382   // work through children to our left
00383   unsigned new_scale = ref_new_scale;
00384   bool     did_child  = false;
00385   while(true) {
00386     int left = this_one - new_scale; // be careful here to use signed int...
00387     // if there is something unitialised to our left, link to it
00388     if (left >= static_cast<int>(left_edge) 
00389                         && _nodes[left].treelinks_null() ) {
00390       _nodes[left].parent = &(_nodes[this_one]);
00391       _nodes[this_one].left = &(_nodes[left]);
00392       // create connections between left_edge and this_one
00393       _do_initial_connections(left, new_scale, left_edge, this_one, depth+1);
00394       did_child = true;
00395       break;
00396     }
00397     // reduce the scale so as to try again
00398     unsigned int old_new_scale = new_scale;
00399     new_scale = (old_new_scale + 1)/2;
00400     // unless we've reached end of tree
00401     if (new_scale == old_new_scale) break;
00402   }
00403   if (!did_child) {_nodes[this_one].left = NULL;}
00404 
00405 
00406   // work through children to our right
00407   new_scale = ref_new_scale;
00408   did_child  = false;
00409   while(true) {
00410     unsigned int right = this_one + new_scale;
00411     if (right < right_edge  && _nodes[right].treelinks_null()) {
00412       _nodes[right].parent = &(_nodes[this_one]);
00413       _nodes[this_one].right = &(_nodes[right]);
00414       // create connections between this_one+1 and right_edge
00415       _do_initial_connections(right, new_scale, this_one+1,right_edge,depth+1);
00416       did_child = true;
00417       break;
00418     }
00419     // reduce the scale so as to try again
00420     unsigned int old_new_scale = new_scale;
00421     new_scale = (old_new_scale + 1)/2;
00422     // unless we've reached end of tree
00423     if (new_scale == old_new_scale) break;
00424   }
00425   if (!did_child) {_nodes[this_one].right = NULL;}
00426 
00427 }
00428 
00429 
00430 
00431 //----------------------------------------------------------------------
00432 template<class T> void SearchTree<T>::remove(unsigned int node_index) {
00433   remove(&(_nodes[node_index]));
00434 }
00435 
00436 //----------------------------------------------------------------------
00437 template<class T> void SearchTree<T>::remove(circulator & circ) {
00438   remove(circ._node);
00439 }
00440 
00441 //----------------------------------------------------------------------
00442 // Useful reference for this:
00443 //   http://en.wikipedia.org/wiki/Binary_search_tree#Deletion
00444 template<class T> void SearchTree<T>::remove(typename SearchTree<T>::Node * node) {
00445 
00446   // we don't remove things from the tree if we've reached the last
00447   // elements... (is this wise?)
00448   assert(size() > 1); // switch this to throw...?
00449   assert(!node->treelinks_null());
00450 
00451   // deal with relinking predecessor and successor
00452   node->predecessor->successor = node->successor;
00453   node->successor->predecessor = node->predecessor;
00454 
00455   if (node->left == NULL && node->right == NULL) {
00456     // node has no children, so remove it by nullifying the pointer 
00457     // from the parent
00458     node->reset_parents_link_to_me(NULL); 
00459 
00460   } else if (node->left != NULL && node->right == NULL){
00461     // make parent point to my child
00462     node->reset_parents_link_to_me(node->left);
00463     // and child to parent
00464     node->left->parent = node->parent;         
00465     // sort out the top node...
00466     if (_top_node == node) {_top_node = node->left;}
00467 
00468   } else if (node->left == NULL && node->right != NULL){
00469     // make parent point to my child
00470     node->reset_parents_link_to_me(node->right);
00471     // and child to parent
00472     node->right->parent = node->parent;   
00473     // sort out the top node...
00474     if (_top_node == node) {_top_node = node->right;}
00475 
00476   } else {
00477     // we have two children; we will put a replacement in our place
00478     Node * replacement;
00479     //SearchTree<T>::Node * replacements_child;
00480     // chose predecessor or successor (one, then other, then first, etc...)
00481     bool use_predecessor = (_n_removes % 2 == 1);
00482     if (use_predecessor) {
00483       // Option 1: put predecessor in our place, and have its parent
00484       // point to its left child (as a predecessor it has no right child)
00485       replacement = node->predecessor;
00486       assert(replacement->right == NULL); // guaranteed if it's our predecessor
00487       // we have to be careful of replacing certain links when the 
00488       // replacement is this node's child
00489       if (replacement != node->left) {
00490         if (replacement->left != NULL) {
00491           replacement->left->parent = replacement->parent;}
00492         replacement->reset_parents_link_to_me(replacement->left);
00493         replacement->left   = node->left;
00494       }
00495       replacement->parent = node->parent;
00496       replacement->right  = node->right;
00497     } else {
00498       // Option 2: put successor in our place, and have its parent
00499       // point to its right child (as a successor it has no left child)
00500       replacement = node->successor;
00501       assert(replacement->left == NULL); // guaranteed if it's our successor
00502       if (replacement != node->right) {
00503         if (replacement->right != NULL) {
00504           replacement->right->parent = replacement->parent;}
00505         replacement->reset_parents_link_to_me(replacement->right);
00506         replacement->right  = node->right;
00507       }
00508       replacement->parent = node->parent;
00509       replacement->left   = node->left;
00510     }
00511     node->reset_parents_link_to_me(replacement);
00512 
00513     // make sure node's original children now point to the replacement
00514     if (node->left  != replacement) {node->left->parent  = replacement;}
00515     if (node->right != replacement) {node->right->parent = replacement;}
00516 
00517     // sort out the top node...
00518     if (_top_node == node) {_top_node = replacement;}
00519   }
00520 
00521   // make sure we leave something nice and clean...
00522   node->nullify_treelinks();
00523   node->predecessor = NULL;
00524   node->successor   = NULL;
00525 
00526   // for bookkeeping (and choosing whether to use pred. or succ.)
00527   _n_removes++;
00528   // for when we next need access to a free node...
00529   _available_nodes.push_back(node);
00530 }
00531 
00532 
00533 //----------------------------------------------------------------------
00534 //template<class T> typename SearchTree<T>::Node * SearchTree<T>::insert(const T & value) {
00535 
00536 //----------------------------------------------------------------------
00537 template<class T> typename SearchTree<T>::circulator SearchTree<T>::insert(const T & value) {
00538   // make sure we don't exceed allowed number of nodes...
00539   assert(_available_nodes.size() > 0);
00540 
00541   Node * node = _available_nodes.back();
00542   _available_nodes.pop_back();
00543   node->value = value;
00544 
00545   Node * location = _top_node;
00546   Node * old_location = NULL;
00547   bool             on_left = true; // (init not needed -- but soothes g++4)
00548   // work through tree until we reach its end
00549 #ifdef TRACK_DEPTH
00550   unsigned int depth = 0;
00551 #endif
00552   while(location != NULL) {
00553 #ifdef TRACK_DEPTH
00554     depth++;
00555 #endif
00556     old_location = location;
00557     on_left = value < location->value;
00558     if (on_left) {location = location->left;}
00559     else {location = location->right;}
00560   }
00561 #ifdef TRACK_DEPTH
00562   _max_depth = max(depth, _max_depth);
00563 #endif
00564   // now create tree links
00565   node->parent = old_location;
00566   if (on_left) {node->parent->left = node;} 
00567   else {node->parent->right = node;}
00568   node->left = NULL;
00569   node->right = NULL;
00570   // and create predecessor / successor links
00571   node->predecessor = _find_predecessor(node);
00572   if (node->predecessor != NULL) {
00573     // it exists, so make use of its info (will include a cyclic case,
00574     // when successor is round the bend)
00575     node->successor = node->predecessor->successor;
00576     node->predecessor->successor = node;
00577     node->successor->predecessor = node;
00578   } else {
00579     // deal with case when we are left-most edge of tree (then successor
00580     // will exist...)
00581     node->successor = _find_successor(node);
00582     assert(node->successor != NULL); // can only happen if we're sole element 
00583                                      // (but not allowed, since tree size>=1)
00584     node->predecessor = node->successor->predecessor;
00585     node->successor->predecessor = node;
00586     node->predecessor->successor = node;
00587   }
00588 
00589   return circulator(node);
00590 }
00591 
00592 
00593 //----------------------------------------------------------------------
00594 template<class T> void SearchTree<T>::verify_structure() {
00595   
00596   // do a check running through all elements
00597   verify_structure_linear();
00598 
00599   // do a recursive check down tree from top
00600 
00601   // first establish the extremities
00602   const Node * left_limit = _top_node;
00603   while (left_limit->left != NULL) {left_limit = left_limit->left;}
00604   const Node * right_limit = _top_node;
00605   while (right_limit->right != NULL) {right_limit = right_limit->right;}
00606 
00607   // then actually do recursion
00608   verify_structure_recursive(_top_node, left_limit, right_limit);
00609 }
00610 
00611 
00612 //----------------------------------------------------------------------
00613 template<class T> void SearchTree<T>::verify_structure_recursive(
00614                       const typename SearchTree<T>::Node * element, 
00615                       const typename SearchTree<T>::Node * left_limit,
00616                       const typename SearchTree<T>::Node * right_limit)  const {
00617 
00618   assert(!(element->value < left_limit->value));
00619   assert(!(right_limit->value < element->value));
00620 
00621   const Node * left = element->left;
00622   if (left != NULL) {
00623     assert(!(element->value < left->value));
00624     if (left != left_limit) {
00625       // recurse down the tree with this element as the right-hand limit
00626       verify_structure_recursive(left, left_limit, element);}
00627   }
00628   
00629   const Node * right = element->right;
00630   if (right != NULL) {
00631     assert(!(right->value < element->value));
00632     if (right != right_limit) {
00633       // recurse down the tree with this element as the left-hand limit
00634       verify_structure_recursive(right, element, right_limit);}
00635   }
00636 }
00637 
00638 //----------------------------------------------------------------------
00639 template<class T> void SearchTree<T>::verify_structure_linear() const {
00640 
00641   //print_elements();
00642 
00643   unsigned n_top = 0;
00644   unsigned n_null = 0;
00645   for(unsigned i = 0; i < _nodes.size(); i++) {
00646     const typename SearchTree<T>::Node * node = &(_nodes[i]);
00647     // make sure node is defined
00648     if (node->treelinks_null()) {n_null++; continue;}
00649 
00650     // make sure of the number of "top" nodes 
00651     if (node->parent == NULL) {
00652       n_top++;
00653       //assert(node->left != NULL);
00654       //assert(node->right != NULL);
00655     } else {
00656       // make sure that I am a child of my parent...
00657       //assert((node->parent->left == node) || (node->parent->right == node));
00658       assert((node->parent->left == node) ^ (node->parent->right == node));
00659     }
00660 
00661     // when there is a left child make sure it's value is ordered
00662     // (note use of !(b<a), to allow for a<=b while using just the <
00663     // operator)
00664     if (node->left != NULL) {
00665       assert(!(node->value < node->left->value ));}
00666 
00667     // when there is a right child make sure it's value is ordered
00668     if (node->right != NULL) {
00669       assert(!(node->right->value < node->value ));}
00670 
00671   }
00672   assert(n_top == 1 || (n_top == 0 && size() <= 1) );
00673   assert(n_null == _available_nodes.size() ||
00674          (n_null == _available_nodes.size() + 1 && size() == 1));
00675 }
00676 
00677 
00678 //----------------------------------------------------------------------
00679 template<class T> typename SearchTree<T>::Node * SearchTree<T>::_find_predecessor(const typename SearchTree<T>::Node * node) {
00680 
00681   typename SearchTree<T>::Node * newnode;
00682   if (node->left != NULL) {
00683     // go down left, and then down right as far as possible.
00684     newnode = node->left;
00685     while(newnode->right != NULL) {newnode = newnode->right;}
00686     return newnode;
00687   } else {
00688     const typename SearchTree<T>::Node * lastnode = node;
00689     newnode = node->parent;
00690     // go up the tree as long as we're going right (when we go left then
00691     // we've found something smaller, so stop)
00692     while(newnode != NULL) {
00693       if (newnode->right == lastnode) {return newnode;}
00694       lastnode = newnode;
00695       newnode = newnode->parent;
00696     }
00697     return newnode;
00698   }
00699 }
00700 
00701 
00702 //----------------------------------------------------------------------
00703 template<class T> typename SearchTree<T>::Node * SearchTree<T>::_find_successor(const typename SearchTree<T>::Node * node) {
00704 
00705   typename SearchTree<T>::Node * newnode;
00706   if (node->right != NULL) {
00707     // go down right, and then down left as far as possible.
00708     newnode = node->right;
00709     while(newnode->left != NULL) {newnode = newnode->left;}
00710     return newnode;
00711   } else {
00712     const typename SearchTree<T>::Node * lastnode = node;
00713     newnode = node->parent;
00714     // go up the tree as long as we're going left (when we go right then
00715     // we've found something larger, so stop)
00716     while(newnode != NULL) {
00717       if (newnode->left == lastnode) {return newnode;}
00718       lastnode = newnode;
00719       newnode = newnode->parent;
00720     }
00721     return newnode;
00722   }
00723 }
00724 
00725 
00726 //----------------------------------------------------------------------
00727 // print out all the elements for visual checking...
00728 template<class T> void SearchTree<T>::print_elements() {
00729   typename SearchTree<T>::Node * base_node = &(_nodes[0]);
00730   typename SearchTree<T>::Node * node = base_node;
00731   
00732   int n = _nodes.size();
00733   for(; node - base_node < n ; node++) {
00734     printf("%4d parent:%4d left:%4d right:%4d pred:%4d succ:%4d value:%10.6f\n",loc(node), loc(node->parent), loc(node->left), loc(node->right), loc(node->predecessor),loc(node->successor),node->value);
00735   }
00736 }
00737 
00738 //----------------------------------------------------------------------
00739 template<class T> typename SearchTree<T>::circulator SearchTree<T>::somewhere() {
00740   return circulator(_top_node);
00741 }
00742 
00743 
00744 //----------------------------------------------------------------------
00745 template<class T> typename SearchTree<T>::const_circulator SearchTree<T>::somewhere() const {
00746   return const_circulator(_top_node);
00747 }
00748 
00749 
00750 FASTJET_END_NAMESPACE
00751 
00752 #endif // __FASTJET_SEARCHTREE_HH__
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Defines