FastJet  3.1.0
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Modules Pages
LazyTiling9.cc
1 //FJSTARTHEADER
2 // $Id: LazyTiling9.cc 3477 2014-07-29 14:34:39Z salam $
3 //
4 // Copyright (c) 2005-2014, Matteo Cacciari, Gavin P. Salam and Gregory Soyez
5 //
6 //----------------------------------------------------------------------
7 // This file is part of FastJet.
8 //
9 // FastJet is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 2 of the License, or
12 // (at your option) any later version.
13 //
14 // The algorithms that underlie FastJet have required considerable
15 // development. They are described in the original FastJet paper,
16 // hep-ph/0512210 and in the manual, arXiv:1111.6097. If you use
17 // FastJet as part of work towards a scientific publication, please
18 // quote the version you use and include a citation to the manual and
19 // optionally also to hep-ph/0512210.
20 //
21 // FastJet is distributed in the hope that it will be useful,
22 // but WITHOUT ANY WARRANTY; without even the implied warranty of
23 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 // GNU General Public License for more details.
25 //
26 // You should have received a copy of the GNU General Public License
27 // along with FastJet. If not, see <http://www.gnu.org/licenses/>.
28 //----------------------------------------------------------------------
29 //FJENDHEADER
30 
31 
32 #include <iomanip>
33 #include <limits>
34 #include <cmath>
35 #include "fastjet/internal/LazyTiling9.hh"
36 #include "fastjet/internal/TilingExtent.hh"
37 using namespace std;
38 
39 // uncomment the line below to use TilingExtent in LazyTiling9
40 #define _FASTJET_TILING2_USE_TILING_ANALYSIS_
41 
42 FASTJET_BEGIN_NAMESPACE // defined in fastjet/internal/base.hh
43 
44 
45 
46 LazyTiling9::LazyTiling9(ClusterSequence & cs) :
47  _cs(cs), _jets(cs.jets())
48  //, _minheap(_jets.size())
49 {
50 #ifdef INSTRUMENT2
51  _ncall = 0; // gps tmp
52  _ncall_dtt = 0; // gps tmp
53 #endif // INSTRUMENT2
54  _Rparam = cs.jet_def().R();
55  _R2 = _Rparam * _Rparam;
56  _invR2 = 1.0 / _R2;
57  _initialise_tiles();
58 }
59 
60 
61 //----------------------------------------------------------------------
62 /// Set up the tiles:
63 /// - decide the range in eta
64 /// - allocate the tiles
65 /// - set up the cross-referencing info between tiles
66 ///
67 /// The neighbourhood of a tile is set up as follows
68 ///
69 /// LRR
70 /// LXR
71 /// LLR
72 ///
73 /// such that tiles is an array containing XLLLLRRRR with pointers
74 /// | \ RH_tiles
75 /// \ surrounding_tiles
76 ///
77 /// with appropriate precautions when close to the edge of the tiled
78 /// region.
79 ///
80 void LazyTiling9::_initialise_tiles() {
81 
82  // first decide tile sizes (with a lower bound to avoid huge memory use with
83  // very small R)
84  double default_size = max(0.1,_Rparam);
85  _tile_size_eta = default_size;
86  // it makes no sense to go below 3 tiles in phi -- 3 tiles is
87  // sufficient to make sure all pair-wise combinations up to pi in
88  // phi are possible
89  _n_tiles_phi = max(3,int(floor(twopi/default_size)));
90  _tile_size_phi = twopi / _n_tiles_phi; // >= _Rparam and fits in 2pi
91 
92 #ifdef _FASTJET_TILING2_USE_TILING_ANALYSIS_
93  // testing
94  TilingExtent tiling_analysis(_cs);
95  _tiles_eta_min = tiling_analysis.minrap();
96  _tiles_eta_max = tiling_analysis.maxrap();
97  //cout << "Using timing analysis " << " " << _tiles_eta_min << " " << _tiles_eta_max << endl;
98 #else
99  // always include zero rapidity in the tiling region
100  _tiles_eta_min = 0.0;
101  _tiles_eta_max = 0.0;
102  // but go no further than following
103  const double maxrap = 7.0;
104 
105  // and find out how much further one should go
106  for(unsigned int i = 0; i < _jets.size(); i++) {
107  double eta = _jets[i].rap();
108  // first check if eta is in range -- to avoid taking into account
109  // very spurious rapidities due to particles with near-zero kt.
110  if (abs(eta) < maxrap) {
111  if (eta < _tiles_eta_min) {_tiles_eta_min = eta;}
112  if (eta > _tiles_eta_max) {_tiles_eta_max = eta;}
113  }
114  }
115  //cout << "NOT using timing analysis " << " " << _tiles_eta_min << " " << _tiles_eta_max << endl;
116 #endif
117 
118  // Now adjust the values for the rapidity ("eta") range.
119  //
120  // When tile_size_eta is large, we have two options:
121  // - always have at least two tiles in rapidity (FASTJET_LAZY9_MIN2TILESY),
122  // currently split down the middle of the rapidity extent of the particles
123  // - take whatever we get from the original
124  // _tiles_ieta_min[max] = int(floor(_tiles_eta_min[max]/_tile_size_eta));
125  // which will sometimes leave us with just one tile in Y;
126  //
127  // For events that are symetric in Y this should not change
128  // anything, but for asymmetric ones FASTJET_LAZY9_MIN2TILESY may be
129  // a bit faster.
130  //
131 #define FASTJET_LAZY9_MIN2TILESY
132 #ifdef FASTJET_LAZY9_MIN2TILESY
133  if (_tiles_eta_max - _tiles_eta_min < 2*_tile_size_eta) {
134  // if we have a rapidity coverage that is small compared to the
135  // tile size then we can adjust the grid in rapidity so as to
136  // have exactly 3 tiles. This can give relevant speed improvements
137  // for large R jets
138  _tile_size_eta = (_tiles_eta_max - _tiles_eta_min)/2;
139  _tiles_ieta_min = 0;
140  _tiles_ieta_max = 1;
141  // the eta max value is being taken as the lower edge of the
142  // highest-y tile
143  _tiles_eta_max -= _tile_size_eta;
144  } else {
145 #endif //FASTJET_LAZY9_MIN2TILESY
146  _tiles_ieta_min = int(floor(_tiles_eta_min/_tile_size_eta));
147  _tiles_ieta_max = int(floor( _tiles_eta_max/_tile_size_eta));
148  _tiles_eta_min = _tiles_ieta_min * _tile_size_eta;
149  _tiles_eta_max = _tiles_ieta_max * _tile_size_eta;
150 #ifdef FASTJET_LAZY9_MIN2TILESY
151  }
152 #endif
153 
154  _tile_half_size_eta = _tile_size_eta * 0.5;
155  _tile_half_size_phi = _tile_size_phi * 0.5;
156 
157  // set up information about whether we need to allow for "periodic"
158  // wrapping tests in delta_phi calculations
159  vector<bool> use_periodic_delta_phi(_n_tiles_phi, false);
160  if (_n_tiles_phi <= 3) {
161  fill(use_periodic_delta_phi.begin(), use_periodic_delta_phi.end(), true);
162  } else {
163  use_periodic_delta_phi[0] = true;
164  use_periodic_delta_phi[_n_tiles_phi-1] = true;
165  }
166 
167  // allocate the tiles
168  _tiles.resize((_tiles_ieta_max-_tiles_ieta_min+1)*_n_tiles_phi);
169 
170  // now set up the cross-referencing between tiles
171  for (int ieta = _tiles_ieta_min; ieta <= _tiles_ieta_max; ieta++) {
172  for (int iphi = 0; iphi < _n_tiles_phi; iphi++) {
173  Tile2 * tile = & _tiles[_tile_index(ieta,iphi)];
174  // no jets in this tile yet
175  tile->head = NULL; // first element of tiles points to itself
176  tile->begin_tiles[0] = tile;
177  Tile2 ** pptile = & (tile->begin_tiles[0]);
178  pptile++;
179  //
180  // set up L's in column to the left of X
181  tile->surrounding_tiles = pptile;
182  if (ieta > _tiles_ieta_min) {
183  // with the itile subroutine, we can safely run tiles from
184  // idphi=-1 to idphi=+1, because it takes care of
185  // negative and positive boundaries
186  for (int idphi = -1; idphi <=+1; idphi++) {
187  *pptile = & _tiles[_tile_index(ieta-1,iphi+idphi)];
188  pptile++;
189  }
190  }
191  // now set up last L (below X)
192  *pptile = & _tiles[_tile_index(ieta,iphi-1)];
193  pptile++;
194  // set up first R (above X)
195  tile->RH_tiles = pptile;
196  *pptile = & _tiles[_tile_index(ieta,iphi+1)];
197  pptile++;
198  // set up remaining R's, to the right of X
199  if (ieta < _tiles_ieta_max) {
200  for (int idphi = -1; idphi <= +1; idphi++) {
201  *pptile = & _tiles[_tile_index(ieta+1,iphi+idphi)];
202  pptile++;
203  }
204  }
205  // now put semaphore for end tile
206  tile->end_tiles = pptile;
207  // finally make sure tiles are untagged
208  tile->tagged = false;
209  // and store the information about periodicity in phi
210  tile->use_periodic_delta_phi = use_periodic_delta_phi[iphi];
211  // and ensure max distance is sensibly initialised
212  tile->max_NN_dist = 0;
213  // and also position of centre of tile
214  tile->eta_centre = (ieta-_tiles_ieta_min+0.5)*_tile_size_eta + _tiles_eta_min;
215  tile->phi_centre = (iphi+0.5)*_tile_size_phi;
216  }
217  }
218 
219 }
220 
221 //----------------------------------------------------------------------
222 /// return the tile index corresponding to the given eta,phi point
223 int LazyTiling9::_tile_index(const double eta, const double phi) const {
224  int ieta, iphi;
225  if (eta <= _tiles_eta_min) {ieta = 0;}
226  else if (eta >= _tiles_eta_max) {ieta = _tiles_ieta_max-_tiles_ieta_min;}
227  else {
228  //ieta = int(floor((eta - _tiles_eta_min) / _tile_size_eta));
229  ieta = int(((eta - _tiles_eta_min) / _tile_size_eta));
230  // following needed in case of rare but nasty rounding errors
231  if (ieta > _tiles_ieta_max-_tiles_ieta_min) {
232  ieta = _tiles_ieta_max-_tiles_ieta_min;}
233  }
234  // allow for some extent of being beyond range in calculation of phi
235  // as well
236  //iphi = (int(floor(phi/_tile_size_phi)) + _n_tiles_phi) % _n_tiles_phi;
237  // with just int and no floor, things run faster but beware
238  iphi = int((phi+twopi)/_tile_size_phi) % _n_tiles_phi;
239  return (iphi + ieta * _n_tiles_phi);
240 }
241 
242 
243 //----------------------------------------------------------------------
244 // sets up information regarding the tiling of the given jet
245 inline void LazyTiling9::_tj_set_jetinfo( TiledJet * const jet,
246  const int _jets_index) {
247  // first call the generic setup
248  _bj_set_jetinfo<>(jet, _jets_index);
249 
250  // Then do the setup specific to the tiled case.
251 
252  // Find out which tile it belonds to
253  jet->tile_index = _tile_index(jet->eta, jet->phi);
254 
255  // Insert it into the tile's linked list of jets
256  Tile2 * tile = &_tiles[jet->tile_index];
257  jet->previous = NULL;
258  jet->next = tile->head;
259  if (jet->next != NULL) {jet->next->previous = jet;}
260  tile->head = jet;
261 }
262 
263 
264 //----------------------------------------------------------------------
265 void LazyTiling9::_bj_remove_from_tiles(TiledJet * const jet) {
266  Tile2 * tile = & _tiles[jet->tile_index];
267 
268  if (jet->previous == NULL) {
269  // we are at head of the tile, so reset it.
270  // If this was the only jet on the tile then tile->head will now be NULL
271  tile->head = jet->next;
272  } else {
273  // adjust link from previous jet in this tile
274  jet->previous->next = jet->next;
275  }
276  if (jet->next != NULL) {
277  // adjust backwards-link from next jet in this tile
278  jet->next->previous = jet->previous;
279  }
280 }
281 
282 
283 //----------------------------------------------------------------------
284 /// output the contents of the tiles
285 void LazyTiling9::_print_tiles(TiledJet * briefjets ) const {
286  for (vector<Tile2>::const_iterator tile = _tiles.begin();
287  tile < _tiles.end(); tile++) {
288  cout << "Tile " << tile - _tiles.begin()<<" = ";
289  vector<int> list;
290  for (TiledJet * jetI = tile->head; jetI != NULL; jetI = jetI->next) {
291  list.push_back(jetI-briefjets);
292  //cout <<" "<<jetI-briefjets;
293  }
294  sort(list.begin(),list.end());
295  for (unsigned int i = 0; i < list.size(); i++) {cout <<" "<<list[i];}
296  cout <<"\n";
297  }
298 }
299 
300 
301 //----------------------------------------------------------------------
302 /// Add to the vector tile_union the tiles that are in the neighbourhood
303 /// of the specified tile_index, including itself -- start adding
304 /// from position n_near_tiles-1, and increase n_near_tiles as
305 /// you go along (could have done it more C++ like with vector with reserved
306 /// space, but fear is that it would have been slower, e.g. checking
307 /// for end of vector at each stage to decide whether to resize it)
308 void LazyTiling9::_add_neighbours_to_tile_union(const int tile_index,
309  vector<int> & tile_union, int & n_near_tiles) const {
310  for (Tile2 * const * near_tile = _tiles[tile_index].begin_tiles;
311  near_tile != _tiles[tile_index].end_tiles; near_tile++){
312  // get the tile number
313  tile_union[n_near_tiles] = *near_tile - & _tiles[0];
314  n_near_tiles++;
315  }
316 }
317 
318 
319 //----------------------------------------------------------------------
320 /// Like _add_neighbours_to_tile_union, but only adds neighbours if
321 /// their "tagged" status is false; when a neighbour is added its
322 /// tagged status is set to true.
323 inline void LazyTiling9::_add_untagged_neighbours_to_tile_union(
324  const int tile_index,
325  vector<int> & tile_union, int & n_near_tiles) {
326  for (Tile2 ** near_tile = _tiles[tile_index].begin_tiles;
327  near_tile != _tiles[tile_index].end_tiles; near_tile++){
328  if (! (*near_tile)->tagged) {
329  (*near_tile)->tagged = true;
330  // get the tile number
331  tile_union[n_near_tiles] = *near_tile - & _tiles[0];
332  n_near_tiles++;
333  }
334  }
335 }
336 
337 //----------------------------------------------------------------------
338 /// Like _add_neighbours_to_tile_union, but adds tiles that are
339 /// "neighbours" of a jet (rather than a tile) and only if a
340 /// neighbouring tile's max_NN_dist is >= the distance between the jet
341 /// and the nearest point on the tile. It ignores tiles that have
342 /// already been tagged.
343 inline void LazyTiling9::_add_untagged_neighbours_to_tile_union_using_max_info(
344  const TiledJet * jet,
345  vector<int> & tile_union, int & n_near_tiles) {
346  Tile2 & tile = _tiles[jet->tile_index];
347 
348  for (Tile2 ** near_tile = tile.begin_tiles; near_tile != tile.end_tiles; near_tile++){
349  if ((*near_tile)->tagged) continue;
350  double dist = _distance_to_tile(jet, *near_tile);
351  // cout << " max info looked at tile " << *near_tile - &_tiles[0]
352  // << ", dist = " << dist << " " << (*near_tile)->max_NN_dist
353  // << endl;
354  if (dist > (*near_tile)->max_NN_dist) continue;
355 
356  // cout << " max info tagged tile " << *near_tile - &_tiles[0] << endl;
357  (*near_tile)->tagged = true;
358  // get the tile number
359  tile_union[n_near_tiles] = *near_tile - & _tiles[0];
360  n_near_tiles++;
361  }
362 }
363 
364 ////--------TMPTMPTMPTMPTMP-----GPS TEMP--------------------
365 //ostream & operator<<(ostream & ostr, const TiledJet & jet) {
366 // ostr << "j" << setw(3) << jet._jets_index << ":pt2,rap,phi=" ; ostr.flush();
367 // ostr << jet.kt2 << ","; ostr.flush();
368 // ostr << jet.eta << ","; ostr.flush();
369 // ostr << jet.phi; ostr.flush();
370 // ostr << ", tile=" << jet.tile_index; ostr.flush();
371 // return ostr;
372 //}
373 
374 
375 //----------------------------------------------------------------------
376 /// returns a particle's distance to the edge of the specified tile
377 inline double LazyTiling9::_distance_to_tile(const TiledJet * bj, const Tile2 * tile)
378 #ifdef INSTRUMENT2
379  {
380  _ncall_dtt++; // GPS tmp
381 #else
382  const {
383 #endif // INSTRUMENT2
384  // Note the careful way of checking the minimum potential deta:
385  // unlike the phi case below, we don't calculate the distance to the
386  // centre and subtract spacing/2. This is because of issue of
387  // boundary tiles, which can extend far beyond spacing/2 in eta.
388  // Using the positions of tile centers should instead be safe.
389  double deta;
390  if (_tiles[bj->tile_index].eta_centre == tile->eta_centre) deta = 0;
391  //else deta = std::abs(bj->eta - tile->eta_centre) - 0.5*_tile_size_eta;
392  else deta = std::abs(bj->eta - tile->eta_centre) - _tile_half_size_eta;
393  // ------
394  // |
395  // A | B
396  // ------
397  // |
398  // C | D
399  // ------
400 
401  double dphi = std::abs(bj->phi - tile->phi_centre);
402  if (dphi > pi) dphi = twopi-dphi;
403  dphi -= _tile_half_size_phi;
404  //dphi -= 0.5*_tile_size_phi;
405  if (dphi < 0) dphi = 0;
406 
407  return dphi*dphi + deta*deta;
408 }
409 
410 
411 
412 
413 //----------------------------------------------------------------------
414 /// looks at distance between jetX and jetI and updates the NN
415 /// information if relevant; also pushes identity of jetI onto
416 /// the vector of jets for minheap, to signal that it will have
417 /// to be handled later.
418 ///
419 /// GPS TEMP GPS TMP: REMOVE THIS LATER: EVEN LABELLED AS INLINE, THE
420 /// CALL ADDS A SUBSTANTIAL PENALTY...
421 inline void LazyTiling9::_update_jetX_jetI_NN(TiledJet * jetX, TiledJet * jetI, vector<TiledJet *> & jets_for_minheap) {
422  double dist = _bj_dist(jetI,jetX);
423  if (dist < jetI->NN_dist) {
424  if (jetI != jetX) {
425  jetI->NN_dist = dist;
426  jetI->NN = jetX;
427  // label jetI as needing heap action...
428  if (!jetI->minheap_update_needed()) {
429  jetI->label_minheap_update_needed();
430  jets_for_minheap.push_back(jetI);
431  }
432  }
433  }
434  if (dist < jetX->NN_dist) {
435  if (jetI != jetX) {
436  jetX->NN_dist = dist;
437  jetX->NN = jetI;}
438  }
439 }
440 
441 
442 inline void LazyTiling9::_set_NN(TiledJet * jetI,
443  vector<TiledJet *> & jets_for_minheap) {
444  jetI->NN_dist = _R2;
445  jetI->NN = NULL;
446  // label jetI as needing heap action...
447  if (!jetI->minheap_update_needed()) {
448  jetI->label_minheap_update_needed();
449  jets_for_minheap.push_back(jetI);}
450  // now go over tiles that are neighbours of I (include own tile)
451  Tile2 * tile_ptr = &_tiles[jetI->tile_index];
452  //if (tile_ptr->is_near_zero_phi(_tile_size_phi)) {
453  for (Tile2 ** near_tile = tile_ptr->begin_tiles;
454  near_tile != tile_ptr->end_tiles; near_tile++) {
455  // for own tile, this will be zero automatically: should we be clever
456  // and skip the test? (With some doubling of code?)
457  if (jetI->NN_dist < _distance_to_tile(jetI, *near_tile)) continue;
458  // and then over the contents of that tile
459  for (TiledJet * jetJ = (*near_tile)->head;
460  jetJ != NULL; jetJ = jetJ->next) {
461  double dist = _bj_dist(jetI,jetJ);
462  if (dist < jetI->NN_dist && jetJ != jetI) {
463  jetI->NN_dist = dist; jetI->NN = jetJ;
464  }
465  }
466  }
467  // } else {
468  // // second copy that exploits the fact that for this tile we needn't worry
469  // // about periodicity
470  // for (Tile2 ** near_tile = tile_ptr->begin_tiles;
471  // near_tile != tile_ptr->end_tiles; near_tile++) {
472  // // for own tile, this will be zero automatically: should we be clever
473  // // and skip the test? (With some doubling of code?)
474  // if (jetI->NN_dist < _distance_to_tile(jetI, *near_tile)) continue;
475  // // and then over the contents of that tile
476  // for (TiledJet * jetJ = (*near_tile)->head;
477  // jetJ != NULL; jetJ = jetJ->next) {
478  // double dist = _bj_dist_not_periodic(jetI,jetJ);
479  // if (dist < jetI->NN_dist && jetJ != jetI) {
480  // jetI->NN_dist = dist; jetI->NN = jetJ;
481  // }
482  // }
483  // }
484  // }
485 }
486 
487 
488 void LazyTiling9::run() {
489 
490  //_initialise_tiles();
491 
492  int n = _jets.size();
493  if (n == 0) return;
494 
495  TiledJet * briefjets = new TiledJet[n];
496  TiledJet * jetA = briefjets, * jetB;
497  // avoid warning about uninitialised oldB below;
498  // only valid for n>=1 (hence the test n==0 test above)
499  TiledJet oldB = briefjets[0];
500 
501  // will be used quite deep inside loops, but declare it here so that
502  // memory (de)allocation gets done only once
503  vector<int> tile_union(3*n_tile_neighbours);
504 
505  // initialise the basic jet info
506  for (int i = 0; i< n; i++) {
507  _tj_set_jetinfo(jetA, i);
508  //cout << i<<": "<<jetA->tile_index<<"\n";
509  jetA++; // move on to next entry of briefjets
510  }
511  TiledJet * head = briefjets; // a nicer way of naming start
512 
513 
514  // // count the contents of the tiles
515  // for (int ieta = _tiles_ieta_min; ieta <= _tiles_ieta_max; ieta++) {
516  // for (int iphi = 0; iphi < _n_tiles_phi; iphi++) {
517  // Tile2 * tile = & _tiles[_tile_index(ieta,iphi)];
518  // int njets = 0;
519  // const TiledJet * jet = tile->head;
520  // while (jet != 0) {
521  // njets++;
522  // jet = jet->next;
523  // }
524  // cout << ieta
525  // << " " << iphi
526  // << " " << tile->jet_count()
527  // << endl;
528  // }
529  // }
530 
531 
532  // set up the initial nearest neighbour information
533  vector<Tile2>::iterator tile;
534  for (tile = _tiles.begin(); tile != _tiles.end(); tile++) {
535  // first do it on this tile
536  for (jetA = tile->head; jetA != NULL; jetA = jetA->next) {
537  for (jetB = tile->head; jetB != jetA; jetB = jetB->next) {
538  double dist = _bj_dist_not_periodic(jetA,jetB);
539  if (dist < jetA->NN_dist) {jetA->NN_dist = dist; jetA->NN = jetB;}
540  if (dist < jetB->NN_dist) {jetB->NN_dist = dist; jetB->NN = jetA;}
541  }
542  }
543  for (jetA = tile->head; jetA != NULL; jetA = jetA->next) {
544  if (jetA->NN_dist > tile->max_NN_dist) tile->max_NN_dist = jetA->NN_dist;
545  }
546  }
547  for (tile = _tiles.begin(); tile != _tiles.end(); tile++) {
548  if (tile->use_periodic_delta_phi) {
549  // then do it for RH tiles;
550  for (Tile2 ** RTile = tile->RH_tiles; RTile != tile->end_tiles; RTile++) {
551  for (jetA = tile->head; jetA != NULL; jetA = jetA->next) {
552  double dist_to_tile = _distance_to_tile(jetA, *RTile);
553  // it only makes sense to do a tile if jetA is close enough to the Rtile
554  // either for a jet in the Rtile to be closer to jetA than it's current NN
555  // or if jetA could be closer to something in the Rtile than the largest
556  // NN distance within the RTile.
557  //
558  // GPS note: also tried approach where we perform only the
559  // first test and run over all surrounding tiles
560  // (not just RH ones). The test is passed less
561  // frequently, but one is running over more tiles
562  // and on balance, for the trial event we used, it's
563  // a bit slower.
564  bool relevant_for_jetA = dist_to_tile <= jetA->NN_dist;
565  bool relevant_for_RTile = dist_to_tile <= (*RTile)->max_NN_dist;
566  if (relevant_for_jetA || relevant_for_RTile) {
567  for (jetB = (*RTile)->head; jetB != NULL; jetB = jetB->next) {
568  double dist = _bj_dist(jetA,jetB);
569  if (dist < jetA->NN_dist) {jetA->NN_dist = dist; jetA->NN = jetB;}
570  if (dist < jetB->NN_dist) {jetB->NN_dist = dist; jetB->NN = jetA;}
571  }
572  }
573  }
574  }
575  } else {
576  // this second version of the code uses the faster
577  // "not_periodic" version because it knows that the tile is
578  // sufficiently far from the edge.
579  for (Tile2 ** RTile = tile->RH_tiles; RTile != tile->end_tiles; RTile++) {
580  for (jetA = tile->head; jetA != NULL; jetA = jetA->next) {
581  double dist_to_tile = _distance_to_tile(jetA, *RTile);
582  bool relevant_for_jetA = dist_to_tile <= jetA->NN_dist;
583  bool relevant_for_RTile = dist_to_tile <= (*RTile)->max_NN_dist;
584  if (relevant_for_jetA || relevant_for_RTile) {
585  for (jetB = (*RTile)->head; jetB != NULL; jetB = jetB->next) {
586  double dist = _bj_dist_not_periodic(jetA,jetB);
587  if (dist < jetA->NN_dist) {jetA->NN_dist = dist; jetA->NN = jetB;}
588  if (dist < jetB->NN_dist) {jetB->NN_dist = dist; jetB->NN = jetA;}
589  }
590  }
591  }
592  }
593  }
594  // no need to do it for LH tiles, since they are implicitly done
595  // when we set NN for both jetA and jetB on the RH tiles.
596  }
597  // Now update the max_NN_dist within each tile. Not strictly
598  // necessary, because existing max_NN_dist is an upper bound. but
599  // costs little and may give some efficiency gain later.
600  for (tile = _tiles.begin(); tile != _tiles.end(); tile++) {
601  tile->max_NN_dist = 0;
602  for (jetA = tile->head; jetA != NULL; jetA = jetA->next) {
603  if (jetA->NN_dist > tile->max_NN_dist) tile->max_NN_dist = jetA->NN_dist;
604  }
605  }
606 
607 #ifdef INSTRUMENT2
608  cout << "intermediate ncall, dtt = " << _ncall << " " << _ncall_dtt << endl; // GPS tmp
609 #endif // INSTRUMENT2
610 
611  vector<double> diJs(n);
612  for (int i = 0; i < n; i++) {
613  diJs[i] = _bj_diJ(&briefjets[i]);
614  briefjets[i].label_minheap_update_done();
615  }
616  MinHeap minheap(diJs);
617  // have a stack telling us which jets we'll have to update on the heap
618  vector<TiledJet *> jets_for_minheap;
619  jets_for_minheap.reserve(n);
620 
621  // now run the recombination loop
622  int history_location = n-1;
623  while (n > 0) {
624 
625  double diJ_min = minheap.minval() *_invR2;
626  jetA = head + minheap.minloc();
627 
628  // do the recombination between A and B
629  history_location++;
630  jetB = jetA->NN;
631 
632  if (jetB != NULL) {
633  // jet-jet recombination
634  // If necessary relabel A & B to ensure jetB < jetA, that way if
635  // the larger of them == newtail then that ends up being jetA and
636  // the new jet that is added as jetB is inserted in a position that
637  // has a future!
638  if (jetA < jetB) {std::swap(jetA,jetB);}
639 
640  int nn; // new jet index
641  _cs.plugin_record_ij_recombination(jetA->_jets_index, jetB->_jets_index, diJ_min, nn);
642 
643  // what was jetB will now become the new jet
644  _bj_remove_from_tiles(jetA);
645  oldB = * jetB; // take a copy because we will need it...
646  _bj_remove_from_tiles(jetB);
647  _tj_set_jetinfo(jetB, nn); // cause jetB to become _jets[nn]
648  // (also registers the jet in the tiling)
649  } else {
650  // jet-beam recombination
651  // get the hist_index
652  _cs.plugin_record_iB_recombination(jetA->_jets_index, diJ_min);
653  _bj_remove_from_tiles(jetA);
654  }
655 
656  // remove the minheap entry for jetA
657  minheap.remove(jetA-head);
658 
659  int n_near_tiles = 0;
660 
661  // Initialise jetB's NN distance as well as updating it for other
662  // particles. While doing so, examine whether jetA or old jetB was
663  // some other particle's NN.
664  if (jetB != NULL) {
665  Tile2 & jetB_tile = _tiles[jetB->tile_index];
666  for (Tile2 ** near_tile = jetB_tile.begin_tiles;
667  near_tile != jetB_tile.end_tiles; near_tile++) {
668 
669  double dist_to_tile = _distance_to_tile(jetB, *near_tile);
670  // use <= in next line so that on first tile, relevant_for_jetB is
671  // set to true
672  bool relevant_for_jetB = dist_to_tile <= jetB->NN_dist;
673  bool relevant_for_near_tile = dist_to_tile <= (*near_tile)->max_NN_dist;
674  bool relevant = relevant_for_jetB || relevant_for_near_tile;
675  if (! relevant) continue;
676  // now label this tile as having been considered (so that we
677  // don't go over it again later)
678  tile_union[n_near_tiles] = *near_tile - & _tiles[0];
679  (*near_tile)->tagged = true;
680  n_near_tiles++;
681 
682  // if going over the neighbouring tile's jets, check anyway
683  // whether A or B were nearest neighbours, since it comes at a
684  // modest cost relative to the distance computation (and we would
685  // in most cases have to do it again later anyway).
686  for (TiledJet * jetI = (*near_tile)->head; jetI != NULL; jetI = jetI->next) {
687  if (jetI->NN == jetA || jetI->NN == jetB) _set_NN(jetI, jets_for_minheap);
688  _update_jetX_jetI_NN(jetB, jetI, jets_for_minheap);
689  }
690  }
691  }
692 
693  // first establish the set of tiles over which we are going to
694  // have to run searches for updated and new nearest-neighbours --
695  // basically a combination of vicinity of the tiles of the two old
696  // and one new jet.
697  int n_done_tiles = n_near_tiles;
698  _add_untagged_neighbours_to_tile_union_using_max_info(jetA,
699  tile_union, n_near_tiles);
700  if (jetB != NULL) {
701  _add_untagged_neighbours_to_tile_union_using_max_info(&oldB,
702  tile_union,n_near_tiles);
703  jetB->label_minheap_update_needed();
704  jets_for_minheap.push_back(jetB);
705  }
706 
707 
708  // first untag the tiles we have already dealt with
709  for (int itile = 0; itile < n_done_tiles; itile++) {
710  _tiles[tile_union[itile]].tagged = false;
711  }
712  // now run over the tiles that were tagged earlier and that we haven't yet
713  // had a change to visit.
714  for (int itile = n_done_tiles; itile < n_near_tiles; itile++) {
715  Tile2 * tile_ptr = &_tiles[tile_union[itile]];
716  tile_ptr->tagged = false;
717  // run over all jets in the current tile
718  for (TiledJet * jetI = tile_ptr->head; jetI != NULL; jetI = jetI->next) {
719  // see if jetI had jetA or jetB as a NN -- if so recalculate the NN
720  if (jetI->NN == jetA || (jetI->NN == jetB && jetB != NULL)) {
721  _set_NN(jetI, jets_for_minheap);
722  }
723  }
724  }
725 
726  // deal with jets whose minheap entry needs updating
727  //if (verbose) cout << " jets whose NN was modified: " << endl;
728  while (jets_for_minheap.size() > 0) {
729  TiledJet * jetI = jets_for_minheap.back();
730  jets_for_minheap.pop_back();
731  minheap.update(jetI-head, _bj_diJ(jetI));
732  jetI->label_minheap_update_done();
733  // handle max_NN_dist update for all jets that might have
734  // seen a change (increase) of distance
735  Tile2 & tile_I = _tiles[jetI->tile_index];
736  if (tile_I.max_NN_dist < jetI->NN_dist) tile_I.max_NN_dist = jetI->NN_dist;
737  }
738  n--;
739  }
740 
741  // final cleaning up;
742  delete[] briefjets;
743 #ifdef INSTRUMENT2
744  cout << "ncall, dtt = " << _ncall << " " << _ncall_dtt << endl; // GPS tmp
745 #endif // INSTRUMENT2
746 
747 }
748 
749 FASTJET_END_NAMESPACE