FastJet 3.0.1
|
00001 #ifndef D0RunIconeJets_HepEntity_class 00002 #define D0RunIconeJets_HepEntity_class 00003 00004 #include "inline_maths.h" 00005 #include <fastjet/internal/base.hh> 00006 00007 FASTJET_BEGIN_NAMESPACE 00008 00009 namespace d0runi{ 00010 00011 //Author: Lars Sonnenschein 15/Sep/2009 00012 //This is an example class fulfilling the minimal requirements needed by the 00013 //D0 RunI cone jet algorithm implementation, which is an inlined template class 00014 00015 // History of changes in FastJet compared tothe original version of 00016 // HepEntity.h 00017 // 00018 // 2011-11-14 Gregory Soyez <soyez@fastjet.fr> 00019 // 00020 // * removed some harmless warnings coming with the -Wshadow gcc option 00021 // 00022 // 2011-10-06 Gregory Soyez <soyez@fastjet.fr> 00023 // 00024 // * put the code in the fastjet::d0 namespace 00025 00026 class HepEntityI { 00027 00028 public: 00029 00030 HepEntityI() { 00031 Et=0.; 00032 eta=0.; 00033 phi=0.; 00034 index = -1; 00035 return; 00036 } 00037 00038 00039 HepEntityI(double E_in, double px_in, double py_in, double pz_in, 00040 int index_in = -1) : index(index_in) { 00041 //Snowmass Et scheme 00042 double pt = sqrt(px_in*px_in+py_in*py_in); 00043 double p = sqrt(pt*pt+pz_in*pz_in); 00044 phi = inline_maths::phi(px_in,py_in); 00045 double theta = asin(pt/p); 00046 eta = inline_maths::eta(theta); 00047 00048 Et = E_in*sin(theta); 00049 00050 return; 00051 } 00052 00053 00054 00055 HepEntityI(const HepEntityI& in) : Et(in.Et), eta(in.eta), phi(in.phi), index(in.index) { 00056 return; 00057 } 00058 00059 00060 00061 00062 inline double pT() const { 00063 return Et; 00064 } 00065 00066 inline double px() const { 00067 return Et*cos(phi); 00068 } 00069 00070 inline double py() const { 00071 return Et*sin(phi); 00072 } 00073 00074 inline double pz() const { 00075 return Et*sinh(eta); 00076 } 00077 00078 inline double E() const { 00079 return Et*cosh(eta); 00080 } 00081 00082 00083 inline void p4vec(float* p) const { 00084 p[0] = Et*cos(phi); 00085 p[1] = Et*sin(phi); 00086 p[2] = Et*sinh(eta); 00087 p[3] = Et*cosh(eta); //E 00088 return; 00089 } 00090 00091 00092 inline void Add(const HepEntityI el) { 00093 //assumes Et, eta and phi stored accurately 00094 double w2 = el.Et; 00095 Et += el.Et; 00096 w2 /= Et; 00097 00098 eta += w2*(el.eta - eta); 00099 phi += w2*inline_maths::delta_phi(el.phi, phi); 00100 00101 return; 00102 } 00103 00104 00105 inline void Fill(double E_in, double px_in, double py_in, double pz_in, int index_in) { 00106 double pt = sqrt(px_in*px_in+py_in*py_in); 00107 double p = sqrt(pt*pt+pz_in*pz_in); 00108 phi = inline_maths::phi(px_in,py_in); 00109 double theta = asin(pt/p); 00110 eta = inline_maths::eta(theta); 00111 00112 Et = E_in*sin(theta); 00113 00114 index = index_in; 00115 00116 return; 00117 } 00118 00119 00120 double Et; 00121 double eta; 00122 double phi; 00123 int index; 00124 00125 private: 00126 00127 00128 00129 }; 00130 //end of class HepEntityI; 00131 00132 } // end of namespace d0runi 00133 00134 FASTJET_END_NAMESPACE 00135 00136 #endif