FastJet 3.0.2
|
00001 #ifndef D0RunIconeJets_HepEntity_class 00002 #define D0RunIconeJets_HepEntity_class 00003 00004 #include "inline_maths.h" 00005 #include <fastjet/internal/base.hh> 00006 00007 FASTJET_BEGIN_NAMESPACE 00008 00009 namespace d0runi{ 00010 00011 //Author: Lars Sonnenschein 15/Sep/2009 00012 //This is an example class fulfilling the minimal requirements needed by the 00013 //D0 RunI cone jet algorithm implementation, which is an inlined template class 00014 00015 // This file is distributed with FastJet under the terms of the GNU 00016 // General Public License (v2). Permission to do so has been granted 00017 // by Lars Sonnenschein and the D0 collaboration (see COPYING for 00018 // details) 00019 // 00020 // History of changes in FastJet compared tothe original version of 00021 // HepEntity.h 00022 // 00023 // 2011-12-13 Gregory Soyez <soyez@fastjet.fr> 00024 // 00025 // * added license information 00026 // 00027 // 2011-11-14 Gregory Soyez <soyez@fastjet.fr> 00028 // 00029 // * removed some harmless warnings coming with the -Wshadow gcc option 00030 // 00031 // 2011-10-06 Gregory Soyez <soyez@fastjet.fr> 00032 // 00033 // * put the code in the fastjet::d0runi namespace 00034 00035 class HepEntityI { 00036 00037 public: 00038 00039 HepEntityI() { 00040 Et=0.; 00041 eta=0.; 00042 phi=0.; 00043 index = -1; 00044 return; 00045 } 00046 00047 00048 HepEntityI(double E_in, double px_in, double py_in, double pz_in, 00049 int index_in = -1) : index(index_in) { 00050 //Snowmass Et scheme 00051 double pt = sqrt(px_in*px_in+py_in*py_in); 00052 double p = sqrt(pt*pt+pz_in*pz_in); 00053 phi = inline_maths::phi(px_in,py_in); 00054 double theta = asin(pt/p); 00055 eta = inline_maths::eta(theta); 00056 00057 Et = E_in*sin(theta); 00058 00059 return; 00060 } 00061 00062 00063 00064 HepEntityI(const HepEntityI& in) : Et(in.Et), eta(in.eta), phi(in.phi), index(in.index) { 00065 return; 00066 } 00067 00068 00069 00070 00071 inline double pT() const { 00072 return Et; 00073 } 00074 00075 inline double px() const { 00076 return Et*cos(phi); 00077 } 00078 00079 inline double py() const { 00080 return Et*sin(phi); 00081 } 00082 00083 inline double pz() const { 00084 return Et*sinh(eta); 00085 } 00086 00087 inline double E() const { 00088 return Et*cosh(eta); 00089 } 00090 00091 00092 inline void p4vec(float* p) const { 00093 p[0] = Et*cos(phi); 00094 p[1] = Et*sin(phi); 00095 p[2] = Et*sinh(eta); 00096 p[3] = Et*cosh(eta); //E 00097 return; 00098 } 00099 00100 00101 inline void Add(const HepEntityI el) { 00102 //assumes Et, eta and phi stored accurately 00103 double w2 = el.Et; 00104 Et += el.Et; 00105 w2 /= Et; 00106 00107 eta += w2*(el.eta - eta); 00108 phi += w2*inline_maths::delta_phi(el.phi, phi); 00109 00110 return; 00111 } 00112 00113 00114 inline void Fill(double E_in, double px_in, double py_in, double pz_in, int index_in) { 00115 double pt = sqrt(px_in*px_in+py_in*py_in); 00116 double p = sqrt(pt*pt+pz_in*pz_in); 00117 phi = inline_maths::phi(px_in,py_in); 00118 double theta = asin(pt/p); 00119 eta = inline_maths::eta(theta); 00120 00121 Et = E_in*sin(theta); 00122 00123 index = index_in; 00124 00125 return; 00126 } 00127 00128 00129 double Et; 00130 double eta; 00131 double phi; 00132 int index; 00133 00134 private: 00135 00136 00137 00138 }; 00139 //end of class HepEntityI; 00140 00141 } // end of namespace d0runi 00142 00143 FASTJET_END_NAMESPACE 00144 00145 #endif