FastJet 3.0.6
|
00001 //STARTHEADER 00002 // $Id: PseudoJet.hh 3111 2013-05-04 08:17:27Z salam $ 00003 // 00004 // Copyright (c) 2005-2011, Matteo Cacciari, Gavin P. Salam and Gregory Soyez 00005 // 00006 //---------------------------------------------------------------------- 00007 // This file is part of FastJet. 00008 // 00009 // FastJet is free software; you can redistribute it and/or modify 00010 // it under the terms of the GNU General Public License as published by 00011 // the Free Software Foundation; either version 2 of the License, or 00012 // (at your option) any later version. 00013 // 00014 // The algorithms that underlie FastJet have required considerable 00015 // development and are described in hep-ph/0512210. If you use 00016 // FastJet as part of work towards a scientific publication, please 00017 // include a citation to the FastJet paper. 00018 // 00019 // FastJet is distributed in the hope that it will be useful, 00020 // but WITHOUT ANY WARRANTY; without even the implied warranty of 00021 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00022 // GNU General Public License for more details. 00023 // 00024 // You should have received a copy of the GNU General Public License 00025 // along with FastJet. If not, see <http://www.gnu.org/licenses/>. 00026 //---------------------------------------------------------------------- 00027 //ENDHEADER 00028 00029 00030 #ifndef __FASTJET_PSEUDOJET_HH__ 00031 #define __FASTJET_PSEUDOJET_HH__ 00032 00033 #include<valarray> 00034 #include<vector> 00035 #include<cassert> 00036 #include<cmath> 00037 #include<iostream> 00038 #include "fastjet/internal/numconsts.hh" 00039 #include "fastjet/internal/IsBase.hh" 00040 #include "fastjet/SharedPtr.hh" 00041 #include "fastjet/Error.hh" 00042 #include "fastjet/PseudoJetStructureBase.hh" 00043 00044 FASTJET_BEGIN_NAMESPACE // defined in fastjet/internal/base.hh 00045 00046 //using namespace std; 00047 00048 /// Used to protect against parton-level events where pt can be zero 00049 /// for some partons, giving rapidity=infinity. KtJet fails in those cases. 00050 const double MaxRap = 1e5; 00051 00052 /// default value for phi, meaning it (and rapidity) have yet to be calculated) 00053 const double pseudojet_invalid_phi = -100.0; 00054 const double pseudojet_invalid_rap = -1e200; 00055 00056 #ifndef __FJCORE__ 00057 // forward definition 00058 class ClusterSequenceAreaBase; 00059 #endif // __FJCORE__ 00060 00061 /// @ingroup basic_classes 00062 /// \class PseudoJet 00063 /// Class to contain pseudojets, including minimal information of use to 00064 /// jet-clustering routines. 00065 class PseudoJet { 00066 00067 public: 00068 //---------------------------------------------------------------------- 00069 /// @name Constructors and destructor 00070 //\{ 00071 /// default constructor, which as of FJ3.0 provides an object for 00072 /// which all operations are now valid and which has zero momentum 00073 /// 00074 // (cf. this is actually OK from a timing point of view and in some 00075 // cases better than just having the default constructor for the 00076 // internal shared pointer: see PJtiming.cc and the notes therein) 00077 PseudoJet() : _px(0), _py(0), _pz(0), _E(0) {_finish_init(); _reset_indices();} 00078 //PseudoJet() : _px(0), _py(0), _pz(0), _E(0), _phi(pseudojet_invalid_phi), _rap(pseudojet_invalid_rap), _kt2(0) {_reset_indices();} 00079 /// construct a pseudojet from explicit components 00080 PseudoJet(const double px, const double py, const double pz, const double E); 00081 00082 /// constructor from any object that has px,py,pz,E = some_four_vector[0--3], 00083 template <class L> PseudoJet(const L & some_four_vector); 00084 00085 // Constructor that performs minimal initialisation (only that of 00086 // the shared pointers), of use in certain speed-critical contexts 00087 // 00088 // NB: "dummy" is commented to avoid unused-variable compiler warnings 00089 PseudoJet(bool /* dummy */) {} 00090 00091 /// default (virtual) destructor 00092 virtual ~PseudoJet(){}; 00093 //\} ---- end of constructors and destructors -------------------------- 00094 00095 //---------------------------------------------------------------------- 00096 /// @name Kinematic access functions 00097 //\{ 00098 //---------------------------------------------------------------------- 00099 inline double E() const {return _E;} 00100 inline double e() const {return _E;} // like CLHEP 00101 inline double px() const {return _px;} 00102 inline double py() const {return _py;} 00103 inline double pz() const {return _pz;} 00104 00105 /// returns phi (in the range 0..2pi) 00106 inline double phi() const {return phi_02pi();} 00107 00108 /// returns phi in the range -pi..pi 00109 inline double phi_std() const { 00110 _ensure_valid_rap_phi(); 00111 return _phi > pi ? _phi-twopi : _phi;} 00112 00113 /// returns phi in the range 0..2pi 00114 inline double phi_02pi() const { 00115 _ensure_valid_rap_phi(); 00116 return _phi; 00117 } 00118 00119 /// returns the rapidity or some large value when the rapidity 00120 /// is infinite 00121 inline double rap() const { 00122 _ensure_valid_rap_phi(); 00123 return _rap; 00124 } 00125 00126 /// the same as rap() 00127 inline double rapidity() const {return rap();} // like CLHEP 00128 00129 /// returns the pseudo-rapidity or some large value when the 00130 /// rapidity is infinite 00131 double pseudorapidity() const; 00132 double eta() const {return pseudorapidity();} 00133 00134 /// returns the squared transverse momentum 00135 inline double pt2() const {return _kt2;} 00136 /// returns the scalar transverse momentum 00137 inline double pt() const {return sqrt(_kt2);} 00138 /// returns the squared transverse momentum 00139 inline double perp2() const {return _kt2;} // like CLHEP 00140 /// returns the scalar transverse momentum 00141 inline double perp() const {return sqrt(_kt2);} // like CLHEP 00142 /// returns the squared transverse momentum 00143 inline double kt2() const {return _kt2;} // for bkwds compatibility 00144 00145 /// returns the squared invariant mass // like CLHEP 00146 inline double m2() const {return (_E+_pz)*(_E-_pz)-_kt2;} 00147 /// returns the invariant mass 00148 /// (If m2() is negative then -sqrt(-m2()) is returned, as in CLHEP) 00149 inline double m() const; 00150 00151 /// returns the squared transverse mass = kt^2+m^2 00152 inline double mperp2() const {return (_E+_pz)*(_E-_pz);} 00153 /// returns the transverse mass = sqrt(kt^2+m^2) 00154 inline double mperp() const {return sqrt(std::abs(mperp2()));} 00155 /// returns the squared transverse mass = kt^2+m^2 00156 inline double mt2() const {return (_E+_pz)*(_E-_pz);} 00157 /// returns the transverse mass = sqrt(kt^2+m^2) 00158 inline double mt() const {return sqrt(std::abs(mperp2()));} 00159 00160 /// return the squared 3-vector modulus = px^2+py^2+pz^2 00161 inline double modp2() const {return _kt2+_pz*_pz;} 00162 /// return the 3-vector modulus = sqrt(px^2+py^2+pz^2) 00163 inline double modp() const {return sqrt(_kt2+_pz*_pz);} 00164 00165 /// return the transverse energy 00166 inline double Et() const {return (_kt2==0) ? 0.0 : _E/sqrt(1.0+_pz*_pz/_kt2);} 00167 /// return the transverse energy squared 00168 inline double Et2() const {return (_kt2==0) ? 0.0 : _E*_E/(1.0+_pz*_pz/_kt2);} 00169 00170 /// returns component i, where X==0, Y==1, Z==2, E==3 00171 double operator () (int i) const ; 00172 /// returns component i, where X==0, Y==1, Z==2, E==3 00173 inline double operator [] (int i) const { return (*this)(i); }; // this too 00174 00175 00176 00177 /// returns kt distance (R=1) between this jet and another 00178 double kt_distance(const PseudoJet & other) const; 00179 00180 /// returns squared cylinder (rap-phi) distance between this jet and another 00181 double plain_distance(const PseudoJet & other) const; 00182 /// returns squared cylinder (rap-phi) distance between this jet and 00183 /// another 00184 inline double squared_distance(const PseudoJet & other) const { 00185 return plain_distance(other);} 00186 00187 /// return the cylinder (rap-phi) distance between this jet and another, 00188 /// \f$\Delta_R = \sqrt{\Delta y^2 + \Delta \phi^2}\f$. 00189 inline double delta_R(const PseudoJet & other) const { 00190 return sqrt(squared_distance(other)); 00191 } 00192 00193 /// returns other.phi() - this.phi(), constrained to be in 00194 /// range -pi .. pi 00195 double delta_phi_to(const PseudoJet & other) const; 00196 00197 //// this seemed to compile except if it was used 00198 //friend inline double 00199 // kt_distance(const PseudoJet & jet1, const PseudoJet & jet2) { 00200 // return jet1.kt_distance(jet2);} 00201 00202 /// returns distance between this jet and the beam 00203 inline double beam_distance() const {return _kt2;} 00204 00205 /// return a valarray containing the four-momentum (components 0-2 00206 /// are 3-mom, component 3 is energy). 00207 std::valarray<double> four_mom() const; 00208 00209 //\} ------- end of kinematic access functions 00210 00211 // taken from CLHEP 00212 enum { X=0, Y=1, Z=2, T=3, NUM_COORDINATES=4, SIZE=NUM_COORDINATES }; 00213 00214 00215 //---------------------------------------------------------------------- 00216 /// @name Kinematic modification functions 00217 //\{ 00218 //---------------------------------------------------------------------- 00219 /// transform this jet (given in the rest frame of prest) into a jet 00220 /// in the lab frame [NOT FULLY TESTED] 00221 PseudoJet & boost(const PseudoJet & prest); 00222 /// transform this jet (given in lab) into a jet in the rest 00223 /// frame of prest [NOT FULLY TESTED] 00224 PseudoJet & unboost(const PseudoJet & prest); 00225 00226 void operator*=(double); 00227 void operator/=(double); 00228 void operator+=(const PseudoJet &); 00229 void operator-=(const PseudoJet &); 00230 00231 /// reset the 4-momentum according to the supplied components and 00232 /// put the user and history indices back to their default values 00233 inline void reset(double px, double py, double pz, double E); 00234 00235 /// reset the PseudoJet to be equal to psjet (including its 00236 /// indices); NB if the argument is derived from a PseudoJet then 00237 /// the "reset" used will be the templated version 00238 /// 00239 /// Note: this is included on top of the templated version because 00240 /// PseudoJet is not "derived" from PseudoJet, so the templated 00241 /// reset would not handle this case properly. 00242 inline void reset(const PseudoJet & psjet) { 00243 (*this) = psjet; 00244 } 00245 00246 /// reset the 4-momentum according to the supplied generic 4-vector 00247 /// (accessible via indexing, [0]==px,...[3]==E) and put the user 00248 /// and history indices back to their default values. 00249 template <class L> inline void reset(const L & some_four_vector) { 00250 // check if some_four_vector can be cast to a PseudoJet 00251 // 00252 // Note that a regular dynamic_cast would not work here because 00253 // there is no guarantee that L is polymorphic. We use a more 00254 // complex construct here that works also in such a case. As for 00255 // dynamic_cast, NULL is returned if L is not derived from 00256 // PseudoJet 00257 // 00258 // Note the explicit request for fastjet::cast_if_derived; when 00259 // combining fastjet and fjcore, this avoids ambiguity in which of 00260 // the two cast_if_derived calls to use. 00261 const PseudoJet * pj = fastjet::cast_if_derived<const PseudoJet>(&some_four_vector); 00262 00263 if (pj){ 00264 (*this) = *pj; 00265 } else { 00266 reset(some_four_vector[0], some_four_vector[1], 00267 some_four_vector[2], some_four_vector[3]); 00268 } 00269 } 00270 00271 /// reset the PseudoJet according to the specified pt, rapidity, 00272 /// azimuth and mass (also resetting indices, etc.) 00273 /// (phi should satisfy -2pi<phi<4pi) 00274 inline void reset_PtYPhiM(double pt_in, double y_in, double phi_in, double m_in=0.0) { 00275 reset_momentum_PtYPhiM(pt_in, y_in, phi_in, m_in); 00276 _reset_indices(); 00277 } 00278 00279 /// reset the 4-momentum according to the supplied components 00280 /// but leave all other information (indices, user info, etc.) 00281 /// untouched 00282 inline void reset_momentum(double px, double py, double pz, double E); 00283 00284 /// reset the 4-momentum according to the components of the supplied 00285 /// PseudoJet, including cached components; note that the template 00286 /// version (below) will be called for classes derived from PJ. 00287 inline void reset_momentum(const PseudoJet & pj); 00288 00289 /// reset the 4-momentum according to the specified pt, rapidity, 00290 /// azimuth and mass (phi should satisfy -2pi<phi<4pi) 00291 void reset_momentum_PtYPhiM(double pt, double y, double phi, double m=0.0); 00292 00293 /// reset the 4-momentum according to the supplied generic 4-vector 00294 /// (accessible via indexing, [0]==px,...[3]==E), but leave all 00295 /// other information (indices, user info, etc.) untouched 00296 template <class L> inline void reset_momentum(const L & some_four_vector) { 00297 reset_momentum(some_four_vector[0], some_four_vector[1], 00298 some_four_vector[2], some_four_vector[3]); 00299 } 00300 00301 /// in some cases when setting a 4-momentum, the user/program knows 00302 /// what rapidity and azimuth are associated with that 4-momentum; 00303 /// by calling this routine the user can provide the information 00304 /// directly to the PseudoJet and avoid expensive rap-phi 00305 /// recalculations. 00306 /// 00307 /// - \param rap rapidity 00308 /// - \param phi (in range -twopi...4*pi) 00309 /// 00310 /// USE WITH CAUTION: there are no checks that the rapidity and 00311 /// azimuth supplied are sensible, nor does this reset the 00312 /// 4-momentum components if things don't match. 00313 void set_cached_rap_phi(double rap, double phi); 00314 00315 00316 //\} --- end of kin mod functions ------------------------------------ 00317 00318 //---------------------------------------------------------------------- 00319 /// @name User index functions 00320 /// 00321 /// To allow the user to set and access an integer index which can 00322 /// be exploited by the user to associate extra information with a 00323 /// particle/jet (for example pdg id, or an indication of a 00324 /// particle's origin within the user's analysis) 00325 // 00326 //\{ 00327 00328 /// return the user_index, 00329 inline int user_index() const {return _user_index;} 00330 /// set the user_index, intended to allow the user to add simple 00331 /// identifying information to a particle/jet 00332 inline void set_user_index(const int index) {_user_index = index;} 00333 00334 //\} ----- end of use index functions --------------------------------- 00335 00336 //---------------------------------------------------------------------- 00337 /// @name User information types and functions 00338 /// 00339 /// Allows PseudoJet to carry extra user info (as an object derived from 00340 /// UserInfoBase). 00341 //\{ 00342 00343 /// @ingroup user_info 00344 /// \class UserInfoBase 00345 /// a base class to hold extra user information in a PseudoJet 00346 /// 00347 /// This is a base class to help associate extra user information 00348 /// with a jet. The user should store their information in a class 00349 /// derived from this. This allows information of arbitrary 00350 /// complexity to be easily associated with a PseudoJet (in contrast 00351 /// to the user index). For example, in a Monte Carlo simulation, 00352 /// the user information might include the PDG ID, and the position 00353 /// of the production vertex for the particle. 00354 /// 00355 /// The PseudoJet is able to store a shared pointer to any object 00356 /// derived from UserInfo. The use of a shared pointer frees the 00357 /// user of the need to handle the memory management associated with 00358 /// the information. 00359 /// 00360 /// Having the user information derive from a common base class also 00361 /// facilitates dynamic casting, etc. 00362 /// 00363 class UserInfoBase{ 00364 public: 00365 // dummy ctor 00366 UserInfoBase(){}; 00367 00368 // dummy virtual dtor 00369 // makes it polymorphic to allow for dynamic_cast 00370 virtual ~UserInfoBase(){}; 00371 }; 00372 00373 /// error class to be thrown if accessing user info when it doesn't 00374 /// exist 00375 class InexistentUserInfo : public Error { 00376 public: 00377 InexistentUserInfo(); 00378 }; 00379 00380 /// sets the internal shared pointer to the user information. 00381 /// 00382 /// Note that the PseudoJet will now _own_ the pointer, and delete 00383 /// the corresponding object when it (the jet, and any copies of the jet) 00384 /// goes out of scope. 00385 void set_user_info(UserInfoBase * user_info_in) { 00386 _user_info.reset(user_info_in); 00387 } 00388 00389 /// returns a reference to the dynamic cast conversion of user_info 00390 /// to type L. 00391 /// 00392 /// Usage: suppose you have previously set the user info with a pointer 00393 /// to an object of type MyInfo, 00394 /// 00395 /// class MyInfo: public PseudoJet::UserInfoBase { 00396 /// MyInfo(int id) : _pdg_id(id); 00397 /// int pdg_id() const {return _pdg_id;} 00398 /// int _pdg_id; 00399 /// }; 00400 /// 00401 /// PseudoJet particle(...); 00402 /// particle.set_user_info(new MyInfo(its_pdg_id)); 00403 /// 00404 /// Then you would access that pdg_id() as 00405 /// 00406 /// particle.user_info<MyInfo>().pdg_id(); 00407 /// 00408 /// It's overkill for just a single integer, but scales easily to 00409 /// more extensive information. 00410 /// 00411 /// Note that user_info() throws an InexistentUserInfo() error if 00412 /// there is no user info; throws a std::bad_cast if the conversion 00413 /// doesn't work 00414 /// 00415 /// If this behaviour does not fit your needs, use instead the the 00416 /// user_info_ptr() or user_info_shared_ptr() member functions. 00417 template<class L> 00418 const L & user_info() const{ 00419 if (_user_info.get() == 0) throw InexistentUserInfo(); 00420 return dynamic_cast<const L &>(* _user_info.get()); 00421 } 00422 00423 /// returns true if the PseudoJet has user information 00424 bool has_user_info() const{ 00425 return _user_info.get(); 00426 } 00427 00428 /// returns true if the PseudoJet has user information than can be 00429 /// cast to the template argument type. 00430 template<class L> 00431 bool has_user_info() const{ 00432 return _user_info.get() && dynamic_cast<const L *>(_user_info.get()); 00433 } 00434 00435 /// retrieve a pointer to the (const) user information 00436 const UserInfoBase * user_info_ptr() const{ 00437 if (!_user_info()) return NULL; 00438 return _user_info.get(); 00439 } 00440 00441 00442 /// retrieve a (const) shared pointer to the user information 00443 const SharedPtr<UserInfoBase> & user_info_shared_ptr() const{ 00444 return _user_info; 00445 } 00446 00447 /// retrieve a (non-const) shared pointer to the user information; 00448 /// you can use this, for example, to set the shared pointer, eg 00449 /// 00450 /// \code 00451 /// p2.user_info_shared_ptr() = p1.user_info_shared_ptr(); 00452 /// \endcode 00453 /// 00454 /// or 00455 /// 00456 /// \code 00457 /// SharedPtr<PseudoJet::UserInfoBase> info_shared(new MyInfo(...)); 00458 /// p2.user_info_shared_ptr() = info_shared; 00459 /// \endcode 00460 SharedPtr<UserInfoBase> & user_info_shared_ptr(){ 00461 return _user_info; 00462 } 00463 00464 // \} --- end of extra info functions --------------------------------- 00465 00466 //---------------------------------------------------------------------- 00467 /// @name Description 00468 /// 00469 /// Since a PseudoJet can have a structure that contains a variety 00470 /// of information, we provide a description that allows one to check 00471 /// exactly what kind of PseudoJet we are dealing with 00472 // 00473 //\{ 00474 00475 /// return a string describing what kind of PseudoJet we are dealing with 00476 std::string description() const; 00477 00478 //\} ----- end of description functions --------------------------------- 00479 00480 //------------------------------------------------------------- 00481 /// @name Access to the associated ClusterSequence object. 00482 /// 00483 /// In addition to having kinematic information, jets may contain a 00484 /// reference to an associated ClusterSequence (this is the case, 00485 /// for example, if the jet has been returned by a ClusterSequence 00486 /// member function). 00487 //\{ 00488 //------------------------------------------------------------- 00489 /// returns true if this PseudoJet has an associated ClusterSequence. 00490 bool has_associated_cluster_sequence() const; 00491 /// shorthand for has_associated_cluster_sequence() 00492 bool has_associated_cs() const {return has_associated_cluster_sequence();} 00493 00494 /// returns true if this PseudoJet has an associated and still 00495 /// valid(ated) ClusterSequence. 00496 bool has_valid_cluster_sequence() const; 00497 /// shorthand for has_valid_cluster_sequence() 00498 bool has_valid_cs() const {return has_valid_cluster_sequence();} 00499 00500 /// get a (const) pointer to the parent ClusterSequence (NULL if 00501 /// inexistent) 00502 const ClusterSequence* associated_cluster_sequence() const; 00503 // shorthand for associated_cluster_sequence() 00504 const ClusterSequence* associated_cs() const {return associated_cluster_sequence();} 00505 00506 /// if the jet has a valid associated cluster sequence then return a 00507 /// pointer to it; otherwise throw an error 00508 inline const ClusterSequence * validated_cluster_sequence() const { 00509 return validated_cs(); 00510 } 00511 /// shorthand for validated_cluster_sequence() 00512 const ClusterSequence * validated_cs() const; 00513 00514 #ifndef __FJCORE__ 00515 /// if the jet has valid area information then return a pointer to 00516 /// the associated ClusterSequenceAreaBase object; otherwise throw an error 00517 inline const ClusterSequenceAreaBase * validated_cluster_sequence_area_base() const { 00518 return validated_csab(); 00519 } 00520 00521 /// shorthand for validated_cluster_sequence_area_base() 00522 const ClusterSequenceAreaBase * validated_csab() const; 00523 #endif // __FJCORE__ 00524 00525 //\} 00526 00527 //------------------------------------------------------------- 00528 /// @name Access to the associated PseudoJetStructureBase object. 00529 /// 00530 /// In addition to having kinematic information, jets may contain a 00531 /// reference to an associated ClusterSequence (this is the case, 00532 /// for example, if the jet has been returned by a ClusterSequence 00533 /// member function). 00534 //\{ 00535 //------------------------------------------------------------- 00536 00537 /// set the associated structure 00538 void set_structure_shared_ptr(const SharedPtr<PseudoJetStructureBase> &structure); 00539 00540 /// return true if there is some structure associated with this PseudoJet 00541 bool has_structure() const; 00542 00543 /// return a pointer to the structure (of type 00544 /// PseudoJetStructureBase*) associated with this PseudoJet. 00545 /// 00546 /// return NULL if there is no associated structure 00547 const PseudoJetStructureBase* structure_ptr() const; 00548 00549 /// return a non-const pointer to the structure (of type 00550 /// PseudoJetStructureBase*) associated with this PseudoJet. 00551 /// 00552 /// return NULL if there is no associated structure 00553 /// 00554 /// Only use this if you know what you are doing. In any case, 00555 /// prefer the 'structure_ptr()' (the const version) to this method, 00556 /// unless you really need a write access to the PseudoJet's 00557 /// underlying structure. 00558 PseudoJetStructureBase* structure_non_const_ptr(); 00559 00560 /// return a pointer to the structure (of type 00561 /// PseudoJetStructureBase*) associated with this PseudoJet. 00562 /// 00563 /// throw an error if there is no associated structure 00564 const PseudoJetStructureBase* validated_structure_ptr() const; 00565 00566 /// return a reference to the shared pointer to the 00567 /// PseudoJetStructureBase associated with this PseudoJet 00568 const SharedPtr<PseudoJetStructureBase> & structure_shared_ptr() const; 00569 00570 /// returns a reference to the structure casted to the requested 00571 /// structure type 00572 /// 00573 /// If there is no sructure associated, an Error is thrown. 00574 /// If the type is not met, a std::bad_cast error is thrown. 00575 template<typename StructureType> 00576 const StructureType & structure() const; 00577 00578 /// check if the PseudoJet has the structure resulting from a Transformer 00579 /// (that is, its structure is compatible with a Transformer::StructureType). 00580 /// If there is no structure, false is returned. 00581 template<typename TransformerType> 00582 bool has_structure_of() const; 00583 00584 /// this is a helper to access any structure created by a Transformer 00585 /// (that is, of type Transformer::StructureType). 00586 /// 00587 /// If there is no structure, or if the structure is not compatible 00588 /// with TransformerType, an error is thrown. 00589 template<typename TransformerType> 00590 const typename TransformerType::StructureType & structure_of() const; 00591 00592 //\} 00593 00594 //------------------------------------------------------------- 00595 /// @name Methods for access to information about jet structure 00596 /// 00597 /// These allow access to jet constituents, and other jet 00598 /// subtructure information. They only work if the jet is associated 00599 /// with a ClusterSequence. 00600 //------------------------------------------------------------- 00601 //\{ 00602 00603 /// check if it has been recombined with another PseudoJet in which 00604 /// case, return its partner through the argument. Otherwise, 00605 /// 'partner' is set to 0. 00606 /// 00607 /// an Error is thrown if this PseudoJet has no currently valid 00608 /// associated ClusterSequence 00609 virtual bool has_partner(PseudoJet &partner) const; 00610 00611 /// check if it has been recombined with another PseudoJet in which 00612 /// case, return its child through the argument. Otherwise, 'child' 00613 /// is set to 0. 00614 /// 00615 /// an Error is thrown if this PseudoJet has no currently valid 00616 /// associated ClusterSequence 00617 virtual bool has_child(PseudoJet &child) const; 00618 00619 /// check if it is the product of a recombination, in which case 00620 /// return the 2 parents through the 'parent1' and 'parent2' 00621 /// arguments. Otherwise, set these to 0. 00622 /// 00623 /// an Error is thrown if this PseudoJet has no currently valid 00624 /// associated ClusterSequence 00625 virtual bool has_parents(PseudoJet &parent1, PseudoJet &parent2) const; 00626 00627 /// check if the current PseudoJet contains the one passed as 00628 /// argument. 00629 /// 00630 /// an Error is thrown if this PseudoJet has no currently valid 00631 /// associated ClusterSequence 00632 virtual bool contains(const PseudoJet &constituent) const; 00633 00634 /// check if the current PseudoJet is contained the one passed as 00635 /// argument. 00636 /// 00637 /// an Error is thrown if this PseudoJet has no currently valid 00638 /// associated ClusterSequence 00639 virtual bool is_inside(const PseudoJet &jet) const; 00640 00641 00642 /// returns true if the PseudoJet has constituents 00643 virtual bool has_constituents() const; 00644 00645 /// retrieve the constituents. 00646 /// 00647 /// an Error is thrown if this PseudoJet has no currently valid 00648 /// associated ClusterSequence or other substructure information 00649 virtual std::vector<PseudoJet> constituents() const; 00650 00651 00652 /// returns true if the PseudoJet has support for exclusive subjets 00653 virtual bool has_exclusive_subjets() const; 00654 00655 /// return a vector of all subjets of the current jet (in the sense 00656 /// of the exclusive algorithm) that would be obtained when running 00657 /// the algorithm with the given dcut. 00658 /// 00659 /// Time taken is O(m ln m), where m is the number of subjets that 00660 /// are found. If m gets to be of order of the total number of 00661 /// constituents in the jet, this could be substantially slower than 00662 /// just getting that list of constituents. 00663 /// 00664 /// an Error is thrown if this PseudoJet has no currently valid 00665 /// associated ClusterSequence 00666 std::vector<PseudoJet> exclusive_subjets (const double & dcut) const; 00667 00668 /// return the size of exclusive_subjets(...); still n ln n with same 00669 /// coefficient, but marginally more efficient than manually taking 00670 /// exclusive_subjets.size() 00671 /// 00672 /// an Error is thrown if this PseudoJet has no currently valid 00673 /// associated ClusterSequence 00674 int n_exclusive_subjets(const double & dcut) const; 00675 00676 /// return the list of subjets obtained by unclustering the supplied 00677 /// jet down to nsub subjets. Throws an error if there are fewer than 00678 /// nsub particles in the jet. 00679 /// 00680 /// For ClusterSequence type jets, requires nsub ln nsub time 00681 /// 00682 /// An Error is thrown if this PseudoJet has no currently valid 00683 /// associated ClusterSequence 00684 std::vector<PseudoJet> exclusive_subjets (int nsub) const; 00685 00686 /// return the list of subjets obtained by unclustering the supplied 00687 /// jet down to nsub subjets (or all constituents if there are fewer 00688 /// than nsub). 00689 /// 00690 /// For ClusterSequence type jets, requires nsub ln nsub time 00691 /// 00692 /// An Error is thrown if this PseudoJet has no currently valid 00693 /// associated ClusterSequence 00694 std::vector<PseudoJet> exclusive_subjets_up_to (int nsub) const; 00695 00696 /// return the dij that was present in the merging nsub+1 -> nsub 00697 /// subjets inside this jet. 00698 /// 00699 /// an Error is thrown if this PseudoJet has no currently valid 00700 /// associated ClusterSequence 00701 double exclusive_subdmerge(int nsub) const; 00702 00703 /// return the maximum dij that occurred in the whole event at the 00704 /// stage that the nsub+1 -> nsub merge of subjets occurred inside 00705 /// this jet. 00706 /// 00707 /// an Error is thrown if this PseudoJet has no currently valid 00708 /// associated ClusterSequence 00709 double exclusive_subdmerge_max(int nsub) const; 00710 00711 00712 /// returns true if a jet has pieces 00713 /// 00714 /// By default a single particle or a jet coming from a 00715 /// ClusterSequence have no pieces and this methos will return false. 00716 /// 00717 /// In practice, this is equivalent to have an structure of type 00718 /// CompositeJetStructure. 00719 virtual bool has_pieces() const; 00720 00721 00722 /// retrieve the pieces that make up the jet. 00723 /// 00724 /// If the jet does not support pieces, an error is throw 00725 virtual std::vector<PseudoJet> pieces() const; 00726 00727 00728 // the following ones require a computation of the area in the 00729 // parent ClusterSequence (See ClusterSequenceAreaBase for details) 00730 //------------------------------------------------------------------ 00731 #ifndef __FJCORE__ 00732 00733 /// check if it has a defined area 00734 virtual bool has_area() const; 00735 00736 /// return the jet (scalar) area. 00737 /// throws an Error if there is no support for area in the parent CS 00738 virtual double area() const; 00739 00740 /// return the error (uncertainty) associated with the determination 00741 /// of the area of this jet. 00742 /// throws an Error if there is no support for area in the parent CS 00743 virtual double area_error() const; 00744 00745 /// return the jet 4-vector area. 00746 /// throws an Error if there is no support for area in the parent CS 00747 virtual PseudoJet area_4vector() const; 00748 00749 /// true if this jet is made exclusively of ghosts. 00750 /// throws an Error if there is no support for area in the parent CS 00751 virtual bool is_pure_ghost() const; 00752 00753 #endif // __FJCORE__ 00754 //\} --- end of jet structure ------------------------------------- 00755 00756 00757 00758 //---------------------------------------------------------------------- 00759 /// @name Members mainly intended for internal use 00760 //---------------------------------------------------------------------- 00761 //\{ 00762 /// return the cluster_hist_index, intended to be used by clustering 00763 /// routines. 00764 inline int cluster_hist_index() const {return _cluster_hist_index;} 00765 /// set the cluster_hist_index, intended to be used by clustering routines. 00766 inline void set_cluster_hist_index(const int index) {_cluster_hist_index = index;} 00767 00768 /// alternative name for cluster_hist_index() [perhaps more meaningful] 00769 inline int cluster_sequence_history_index() const { 00770 return cluster_hist_index();} 00771 /// alternative name for set_cluster_hist_index(...) [perhaps more 00772 /// meaningful] 00773 inline void set_cluster_sequence_history_index(const int index) { 00774 set_cluster_hist_index(index);} 00775 00776 //\} ---- end of internal use functions --------------------------- 00777 00778 protected: 00779 00780 SharedPtr<PseudoJetStructureBase> _structure; 00781 SharedPtr<UserInfoBase> _user_info; 00782 00783 00784 private: 00785 // NB: following order must be kept for things to behave sensibly... 00786 double _px,_py,_pz,_E; 00787 mutable double _phi, _rap; 00788 double _kt2; 00789 int _cluster_hist_index, _user_index; 00790 00791 /// calculate phi, rap, kt2 based on the 4-momentum components 00792 void _finish_init(); 00793 /// set the indices to default values 00794 void _reset_indices(); 00795 00796 /// ensure that the internal values for rapidity and phi 00797 /// correspond to 4-momentum structure 00798 inline void _ensure_valid_rap_phi() const { 00799 if (_phi == pseudojet_invalid_phi) _set_rap_phi(); 00800 } 00801 00802 /// set cached rapidity and phi values 00803 void _set_rap_phi() const; 00804 }; 00805 00806 00807 //---------------------------------------------------------------------- 00808 // routines for basic binary operations 00809 00810 PseudoJet operator+(const PseudoJet &, const PseudoJet &); 00811 PseudoJet operator-(const PseudoJet &, const PseudoJet &); 00812 PseudoJet operator*(double, const PseudoJet &); 00813 PseudoJet operator*(const PseudoJet &, double); 00814 PseudoJet operator/(const PseudoJet &, double); 00815 00816 /// returns true if the 4 momentum components of the two PseudoJets 00817 /// are identical and all the internal indices (user, cluster_history) 00818 /// + structure and user-info shared pointers are too 00819 bool operator==(const PseudoJet &, const PseudoJet &); 00820 00821 /// inequality test which is exact opposite of operator== 00822 inline bool operator!=(const PseudoJet & a, const PseudoJet & b) {return !(a==b);} 00823 00824 /// Can only be used with val=0 and tests whether all four 00825 /// momentum components are equal to val (=0.0) 00826 bool operator==(const PseudoJet & jet, const double val); 00827 00828 /// Can only be used with val=0 and tests whether at least one of the 00829 /// four momentum components is different from val (=0.0) 00830 inline bool operator!=(const PseudoJet & a, const double & val) {return !(a==val);} 00831 00832 inline double dot_product(const PseudoJet & a, const PseudoJet & b) { 00833 return a.E()*b.E() - a.px()*b.px() - a.py()*b.py() - a.pz()*b.pz(); 00834 } 00835 00836 /// returns true if the momenta of the two input jets are identical 00837 bool have_same_momentum(const PseudoJet &, const PseudoJet &); 00838 00839 /// return a pseudojet with the given pt, y, phi and mass 00840 /// (phi should satisfy -2pi<phi<4pi) 00841 PseudoJet PtYPhiM(double pt, double y, double phi, double m = 0.0); 00842 00843 //---------------------------------------------------------------------- 00844 // Routines to do with providing sorted arrays of vectors. 00845 00846 /// return a vector of jets sorted into decreasing transverse momentum 00847 std::vector<PseudoJet> sorted_by_pt(const std::vector<PseudoJet> & jets); 00848 00849 /// return a vector of jets sorted into increasing rapidity 00850 std::vector<PseudoJet> sorted_by_rapidity(const std::vector<PseudoJet> & jets); 00851 00852 /// return a vector of jets sorted into decreasing energy 00853 std::vector<PseudoJet> sorted_by_E(const std::vector<PseudoJet> & jets); 00854 00855 /// return a vector of jets sorted into increasing pz 00856 std::vector<PseudoJet> sorted_by_pz(const std::vector<PseudoJet> & jets); 00857 00858 //---------------------------------------------------------------------- 00859 // some code to help sorting 00860 00861 /// sort the indices so that values[indices[0->n-1]] is sorted 00862 /// into increasing order 00863 void sort_indices(std::vector<int> & indices, 00864 const std::vector<double> & values); 00865 00866 /// given a vector of values with a one-to-one correspondence with the 00867 /// vector of objects, sort objects into an order such that the 00868 /// associated values would be in increasing order (but don't actually 00869 /// touch the values vector in the process). 00870 template<class T> std::vector<T> objects_sorted_by_values(const std::vector<T> & objects, 00871 const std::vector<double> & values); 00872 00873 /// \if internal_doc 00874 /// @ingroup internal 00875 /// \class IndexedSortHelper 00876 /// a class that helps us carry out indexed sorting. 00877 /// \endif 00878 class IndexedSortHelper { 00879 public: 00880 inline IndexedSortHelper (const std::vector<double> * reference_values) { 00881 _ref_values = reference_values; 00882 }; 00883 inline int operator() (const int & i1, const int & i2) const { 00884 return (*_ref_values)[i1] < (*_ref_values)[i2]; 00885 }; 00886 private: 00887 const std::vector<double> * _ref_values; 00888 }; 00889 00890 00891 //---------------------------------------------------------------------- 00892 /// constructor from any object that has px,py,pz,E = some_four_vector[0--3], 00893 // NB: do not know if it really needs to be inline, but when it wasn't 00894 // linking failed with g++ (who knows what was wrong...) 00895 template <class L> inline PseudoJet::PseudoJet(const L & some_four_vector) { 00896 reset(some_four_vector); 00897 } 00898 00899 //---------------------------------------------------------------------- 00900 inline void PseudoJet::_reset_indices() { 00901 set_cluster_hist_index(-1); 00902 set_user_index(-1); 00903 _structure.reset(); 00904 _user_info.reset(); 00905 } 00906 00907 00908 // taken literally from CLHEP 00909 inline double PseudoJet::m() const { 00910 double mm = m2(); 00911 return mm < 0.0 ? -std::sqrt(-mm) : std::sqrt(mm); 00912 } 00913 00914 00915 inline void PseudoJet::reset(double px_in, double py_in, double pz_in, double E_in) { 00916 _px = px_in; 00917 _py = py_in; 00918 _pz = pz_in; 00919 _E = E_in; 00920 _finish_init(); 00921 _reset_indices(); 00922 } 00923 00924 inline void PseudoJet::reset_momentum(double px_in, double py_in, double pz_in, double E_in) { 00925 _px = px_in; 00926 _py = py_in; 00927 _pz = pz_in; 00928 _E = E_in; 00929 _finish_init(); 00930 } 00931 00932 inline void PseudoJet::reset_momentum(const PseudoJet & pj) { 00933 _px = pj._px ; 00934 _py = pj._py ; 00935 _pz = pj._pz ; 00936 _E = pj._E ; 00937 _phi = pj._phi; 00938 _rap = pj._rap; 00939 _kt2 = pj._kt2; 00940 } 00941 00942 //------------------------------------------------------------------------------- 00943 // implementation of the templated accesses to the underlying structyre 00944 //------------------------------------------------------------------------------- 00945 00946 // returns a reference to the structure casted to the requested 00947 // structure type 00948 // 00949 // If there is no sructure associated, an Error is thrown. 00950 // If the type is not met, a std::bad_cast error is thrown. 00951 template<typename StructureType> 00952 const StructureType & PseudoJet::structure() const{ 00953 return dynamic_cast<const StructureType &>(* validated_structure_ptr()); 00954 00955 } 00956 00957 // check if the PseudoJet has the structure resulting from a Transformer 00958 // (that is, its structure is compatible with a Transformer::StructureType) 00959 template<typename TransformerType> 00960 bool PseudoJet::has_structure_of() const{ 00961 if (!_structure()) return false; 00962 00963 return dynamic_cast<const typename TransformerType::StructureType *>(_structure.get()) != 0; 00964 } 00965 00966 // this is a helper to access a structure created by a Transformer 00967 // (that is, of type Transformer::StructureType) 00968 // NULL is returned if the corresponding type is not met 00969 template<typename TransformerType> 00970 const typename TransformerType::StructureType & PseudoJet::structure_of() const{ 00971 if (!_structure()) 00972 throw Error("Trying to access the structure of a PseudoJet without an associated structure"); 00973 00974 return dynamic_cast<const typename TransformerType::StructureType &>(*_structure); 00975 } 00976 00977 00978 00979 //------------------------------------------------------------------------------- 00980 // helper functions to build a jet made of pieces 00981 // 00982 // Note that there are more complete versions of these functions, with 00983 // an additional argument for a recombination scheme, in 00984 // JetDefinition.hh 00985 // ------------------------------------------------------------------------------- 00986 00987 /// build a "CompositeJet" from the vector of its pieces 00988 /// 00989 /// In this case, E-scheme recombination is assumed to compute the 00990 /// total momentum 00991 PseudoJet join(const std::vector<PseudoJet> & pieces); 00992 00993 /// build a MergedJet from a single PseudoJet 00994 PseudoJet join(const PseudoJet & j1); 00995 00996 /// build a MergedJet from 2 PseudoJet 00997 PseudoJet join(const PseudoJet & j1, const PseudoJet & j2); 00998 00999 /// build a MergedJet from 3 PseudoJet 01000 PseudoJet join(const PseudoJet & j1, const PseudoJet & j2, const PseudoJet & j3); 01001 01002 /// build a MergedJet from 4 PseudoJet 01003 PseudoJet join(const PseudoJet & j1, const PseudoJet & j2, const PseudoJet & j3, const PseudoJet & j4); 01004 01005 01006 01007 FASTJET_END_NAMESPACE 01008 01009 #endif // __FASTJET_PSEUDOJET_HH__