FastJet 3.0.6
|
00001 //STARTHEADER 00002 // $Id: SearchTree.hh 3107 2013-05-03 15:47:47Z salam $ 00003 // 00004 // Copyright (c) 2005-2011, Matteo Cacciari, Gavin P. Salam and Gregory Soyez 00005 // 00006 //---------------------------------------------------------------------- 00007 // This file is part of FastJet. 00008 // 00009 // FastJet is free software; you can redistribute it and/or modify 00010 // it under the terms of the GNU General Public License as published by 00011 // the Free Software Foundation; either version 2 of the License, or 00012 // (at your option) any later version. 00013 // 00014 // The algorithms that underlie FastJet have required considerable 00015 // development and are described in hep-ph/0512210. If you use 00016 // FastJet as part of work towards a scientific publication, please 00017 // include a citation to the FastJet paper. 00018 // 00019 // FastJet is distributed in the hope that it will be useful, 00020 // but WITHOUT ANY WARRANTY; without even the implied warranty of 00021 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00022 // GNU General Public License for more details. 00023 // 00024 // You should have received a copy of the GNU General Public License 00025 // along with FastJet. If not, see <http://www.gnu.org/licenses/>. 00026 //---------------------------------------------------------------------- 00027 //ENDHEADER 00028 00029 00030 #ifndef __FASTJET_SEARCHTREE_HH__ 00031 #define __FASTJET_SEARCHTREE_HH__ 00032 00033 #include<vector> 00034 #include<cassert> 00035 #include<cstddef> 00036 #include "fastjet/internal/base.hh" 00037 00038 FASTJET_BEGIN_NAMESPACE // defined in fastjet/internal/base.hh 00039 00040 00041 //====================================================================== 00042 /// \if internal_doc 00043 /// @ingroup internal 00044 /// \class SearchTree 00045 /// Efficient class for a search tree 00046 /// 00047 /// This is the class for a search tree designed to be especially efficient 00048 /// when looking for successors and predecessors (to be used in Chan's 00049 /// CP algorithm). It has the requirement that the maximum size of the 00050 /// search tree must be known in advance. 00051 /// \endif 00052 template<class T> class SearchTree { 00053 public: 00054 00055 class Node; 00056 class circulator; 00057 class const_circulator; 00058 00059 /// constructor for a search tree from an ordered vector 00060 SearchTree(const std::vector<T> & init); 00061 00062 /// constructor for a search tree from an ordered vector allowing 00063 /// for future growth beyond the current size, up to max_size 00064 SearchTree(const std::vector<T> & init, unsigned int max_size); 00065 00066 /// remove the node corresponding to node_index from the search tree 00067 void remove(unsigned node_index); 00068 void remove(typename SearchTree::Node * node); 00069 void remove(typename SearchTree::circulator & circ); 00070 00071 /// insert the supplied value into the tree and return a pointer to 00072 /// the relevant SearchTreeNode. 00073 //Node * insert(const T & value); 00074 circulator insert(const T & value); 00075 00076 const Node & operator[](int i) const {return _nodes[i];}; 00077 00078 /// return the number of elements currently in the search tree 00079 unsigned int size() const {return _nodes.size() - _available_nodes.size();} 00080 00081 /// check that the structure we've obtained makes sense... 00082 void verify_structure(); 00083 void verify_structure_linear() const; 00084 void verify_structure_recursive(const Node * , const Node * , const Node * ) const; 00085 00086 /// print out all elements... 00087 void print_elements(); 00088 00089 // tracking the depth may have some speed overhead -- so leave it 00090 // out for the time being... 00091 #ifdef __FASTJET_SEARCHTREE_TRACK_DEPTH 00092 /// the max depth the tree has ever reached 00093 inline unsigned int max_depth() const {return _max_depth;}; 00094 #else 00095 inline unsigned int max_depth() const {return 0;}; 00096 #endif 00097 00098 int loc(const Node * node) const ; 00099 00100 /// return predecessor by walking through the tree 00101 Node * _find_predecessor(const Node *); 00102 /// return successor by walking through the tree 00103 Node * _find_successor(const Node *); 00104 00105 const Node & operator[](unsigned int i) const {return _nodes[i];}; 00106 00107 /// return a circulator to some place in the tree (with a circulator 00108 /// you don't care where...) 00109 const_circulator somewhere() const; 00110 circulator somewhere(); 00111 00112 private: 00113 00114 void _initialize(const std::vector<T> & init); 00115 00116 std::vector<Node> _nodes; 00117 std::vector<Node *> _available_nodes; 00118 Node * _top_node; 00119 unsigned int _n_removes; 00120 00121 00122 /// recursive routine for doing the initial connections assuming things 00123 /// are ordered. Assumes this_one's parent is labelled, and was 00124 /// generated at a scale "scale" -- connections will be carried out 00125 /// including left edge and excluding right edge 00126 void _do_initial_connections(unsigned int this_one, unsigned int scale, 00127 unsigned int left_edge, unsigned int right_edge, 00128 unsigned int depth); 00129 00130 00131 #ifdef __FASTJET_SEARCHTREE_TRACK_DEPTH 00132 unsigned int _max_depth; 00133 #endif 00134 00135 }; 00136 00137 00138 //====================================================================== 00139 /// \if internal_doc 00140 /// @ingroup internal 00141 /// \class SearchTree::Node 00142 /// A node in the search tree 00143 /// \endif 00144 template<class T> class SearchTree<T>::Node{ 00145 public: 00146 Node() {}; /// default constructor 00147 00148 00149 /// returns tree if all the tree-related links are set to null for this node 00150 bool treelinks_null() const { 00151 return ((parent==0) && (left==0) && (right==0));}; 00152 00153 /// set all the tree-related links are set to null for this node 00154 inline void nullify_treelinks() { 00155 parent = NULL; 00156 left = NULL; 00157 right = NULL; 00158 }; 00159 00160 /// if my parent exists, determine whether I am it's left or right 00161 /// node and set the relevant link equal to XX. 00162 void reset_parents_link_to_me(Node * XX); 00163 00164 T value; 00165 Node * left; 00166 Node * right; 00167 Node * parent; 00168 Node * successor; 00169 Node * predecessor; 00170 }; 00171 00172 //---------------------------------------------------------------------- 00173 template<class T> void SearchTree<T>::Node::reset_parents_link_to_me(typename SearchTree<T>::Node * XX) { 00174 if (parent == NULL) {return;} 00175 if (parent->right == this) {parent->right = XX;} 00176 else {parent->left = XX;} 00177 } 00178 00179 00180 00181 //====================================================================== 00182 /// \if internal_doc 00183 /// @ingroup internal 00184 /// \class SearchTree::circulator 00185 /// circulator for the search tree 00186 /// \endif 00187 template<class T> class SearchTree<T>::circulator{ 00188 public: 00189 00190 // so that it can access out _node object; 00191 // note: "class U" needed for clang (v1.1 branches/release_27) compilation 00192 template<class U> friend class SearchTree<U>::const_circulator; 00193 friend class SearchTree<T>; 00194 00195 circulator() : _node(NULL) {} 00196 00197 circulator(Node * node) : _node(node) {} 00198 00199 const T * operator->() const {return &(_node->value);} 00200 T * operator->() {return &(_node->value);} 00201 const T & operator*() const {return _node->value;} 00202 T & operator*() {return _node->value;} 00203 00204 /// prefix increment (structure copied from stl_bvector.h) 00205 circulator & operator++() { 00206 _node = _node->successor; 00207 return *this;} 00208 00209 /// postfix increment ["int" argument tells compiler it's postfix] 00210 /// (structure copied from stl_bvector.h) 00211 circulator operator++(int) { 00212 circulator tmp = *this; 00213 _node = _node->successor; 00214 return tmp;} 00215 00216 /// prefix decrement (structure copied from stl_bvector.h) 00217 circulator & operator--() { 00218 _node = _node->predecessor; 00219 return *this;} 00220 00221 /// postfix decrement ["int" argument tells compiler it's postfix] 00222 /// (structure copied from stl_bvector.h) 00223 circulator operator--(int) { 00224 circulator tmp = *this; 00225 _node = _node->predecessor; 00226 return tmp;} 00227 00228 /// return a circulator referring to the next node 00229 circulator next() const { 00230 return circulator(_node->successor);} 00231 00232 /// return a circulator referring to the previous node 00233 circulator previous() const { 00234 return circulator(_node->predecessor);} 00235 00236 bool operator!=(const circulator & other) const {return other._node != _node;} 00237 bool operator==(const circulator & other) const {return other._node == _node;} 00238 00239 private: 00240 Node * _node; 00241 }; 00242 00243 00244 //====================================================================== 00245 /// \if internal_doc 00246 /// @ingroup internal 00247 /// \class SearchTree::const_circulator 00248 /// A const_circulator for the search tree 00249 /// \endif 00250 template<class T> class SearchTree<T>::const_circulator{ 00251 public: 00252 00253 const_circulator() : _node(NULL) {} 00254 00255 const_circulator(const Node * node) : _node(node) {} 00256 const_circulator(const circulator & circ) :_node(circ._node) {} 00257 00258 const T * operator->() {return &(_node->value);} 00259 const T & operator*() const {return _node->value;} 00260 00261 /// prefix increment (structure copied from stl_bvector.h) 00262 const_circulator & operator++() { 00263 _node = _node->successor; 00264 return *this;} 00265 00266 /// postfix increment ["int" argument tells compiler it's postfix] 00267 /// (structure copied from stl_bvector.h) 00268 const_circulator operator++(int) { 00269 const_circulator tmp = *this; 00270 _node = _node->successor; 00271 return tmp;} 00272 00273 00274 /// prefix decrement (structure copied from stl_bvector.h) 00275 const_circulator & operator--() { 00276 _node = _node->predecessor; 00277 return *this;} 00278 00279 /// postfix decrement ["int" argument tells compiler it's postfix] 00280 /// (structure copied from stl_bvector.h) 00281 const_circulator operator--(int) { 00282 const_circulator tmp = *this; 00283 _node = _node->predecessor; 00284 return tmp;} 00285 00286 /// return a circulator referring to the next node 00287 const_circulator next() const { 00288 return const_circulator(_node->successor);} 00289 00290 /// return a circulator referring to the previous node 00291 const_circulator previous() const { 00292 return const_circulator(_node->predecessor);} 00293 00294 00295 00296 bool operator!=(const const_circulator & other) const {return other._node != _node;} 00297 bool operator==(const const_circulator & other) const {return other._node == _node;} 00298 00299 private: 00300 const Node * _node; 00301 }; 00302 00303 00304 00305 00306 //---------------------------------------------------------------------- 00307 /// initialise from a sorted initial array allowing for a larger 00308 /// maximum size of the array... 00309 template<class T> SearchTree<T>::SearchTree(const std::vector<T> & init, 00310 unsigned int max_size) : 00311 _nodes(max_size) { 00312 00313 _available_nodes.reserve(max_size); 00314 _available_nodes.resize(max_size - init.size()); 00315 for (unsigned int i = init.size(); i < max_size; i++) { 00316 _available_nodes[i-init.size()] = &(_nodes[i]); 00317 } 00318 00319 _initialize(init); 00320 } 00321 00322 //---------------------------------------------------------------------- 00323 /// initialise from a sorted initial array 00324 template<class T> SearchTree<T>::SearchTree(const std::vector<T> & init) : 00325 _nodes(init.size()), _available_nodes(0) { 00326 00327 // reserve space for the list of available nodes 00328 _available_nodes.reserve(init.size()); 00329 _initialize(init); 00330 } 00331 00332 //---------------------------------------------------------------------- 00333 /// do the actual hard work of initialization 00334 template<class T> void SearchTree<T>::_initialize(const std::vector<T> & init) { 00335 00336 _n_removes = 0; 00337 unsigned n = init.size(); 00338 assert(n>=1); 00339 00340 // reserve space for the list of available nodes 00341 //_available_nodes.reserve(); 00342 00343 #ifdef __FASTJET_SEARCHTREE_TRACK_DEPTH 00344 _max_depth = 0; 00345 #endif 00346 00347 00348 // validate the input 00349 for (unsigned int i = 1; i<n; i++) { 00350 assert(!(init[i] < init[i-1])); 00351 } 00352 00353 // now initialise the vector; link neighbours in the sequence 00354 for(unsigned int i = 0; i < n; i++) { 00355 _nodes[i].value = init[i]; 00356 _nodes[i].predecessor = (& (_nodes[i])) - 1; 00357 _nodes[i].successor = (& (_nodes[i])) + 1; 00358 _nodes[i].nullify_treelinks(); 00359 } 00360 // make a loop structure so that we can circulate... 00361 _nodes[0].predecessor = (& (_nodes[n-1])); 00362 _nodes[n-1].successor = (& (_nodes[0])); 00363 00364 // now label the rest of the nodes 00365 unsigned int scale = (n+1)/2; 00366 unsigned int top = std::min(n-1,scale); 00367 _nodes[top].parent = NULL; 00368 _top_node = &(_nodes[top]); 00369 _do_initial_connections(top, scale, 0, n, 0); 00370 00371 // make sure things are sensible... 00372 //verify_structure(); 00373 } 00374 00375 00376 00377 //---------------------------------------------------------------------- 00378 template<class T> inline int SearchTree<T>::loc(const Node * node) const {return node == NULL? 00379 -999 : node - &(_nodes[0]);} 00380 00381 00382 //---------------------------------------------------------------------- 00383 /// Recursive creation of connections, assuming the _nodes vector is 00384 /// completely filled and ordered 00385 template<class T> void SearchTree<T>::_do_initial_connections( 00386 unsigned int this_one, 00387 unsigned int scale, 00388 unsigned int left_edge, 00389 unsigned int right_edge, 00390 unsigned int depth 00391 ) { 00392 00393 #ifdef __FASTJET_SEARCHTREE_TRACK_DEPTH 00394 // keep track of tree depth for checking things stay reasonable... 00395 _max_depth = max(depth, _max_depth); 00396 #endif 00397 00398 //std::cout << this_one << " "<< scale<< std::endl; 00399 unsigned int ref_new_scale = (scale+1)/2; 00400 00401 // work through children to our left 00402 unsigned new_scale = ref_new_scale; 00403 bool did_child = false; 00404 while(true) { 00405 int left = this_one - new_scale; // be careful here to use signed int... 00406 // if there is something unitialised to our left, link to it 00407 if (left >= static_cast<int>(left_edge) 00408 && _nodes[left].treelinks_null() ) { 00409 _nodes[left].parent = &(_nodes[this_one]); 00410 _nodes[this_one].left = &(_nodes[left]); 00411 // create connections between left_edge and this_one 00412 _do_initial_connections(left, new_scale, left_edge, this_one, depth+1); 00413 did_child = true; 00414 break; 00415 } 00416 // reduce the scale so as to try again 00417 unsigned int old_new_scale = new_scale; 00418 new_scale = (old_new_scale + 1)/2; 00419 // unless we've reached end of tree 00420 if (new_scale == old_new_scale) break; 00421 } 00422 if (!did_child) {_nodes[this_one].left = NULL;} 00423 00424 00425 // work through children to our right 00426 new_scale = ref_new_scale; 00427 did_child = false; 00428 while(true) { 00429 unsigned int right = this_one + new_scale; 00430 if (right < right_edge && _nodes[right].treelinks_null()) { 00431 _nodes[right].parent = &(_nodes[this_one]); 00432 _nodes[this_one].right = &(_nodes[right]); 00433 // create connections between this_one+1 and right_edge 00434 _do_initial_connections(right, new_scale, this_one+1,right_edge,depth+1); 00435 did_child = true; 00436 break; 00437 } 00438 // reduce the scale so as to try again 00439 unsigned int old_new_scale = new_scale; 00440 new_scale = (old_new_scale + 1)/2; 00441 // unless we've reached end of tree 00442 if (new_scale == old_new_scale) break; 00443 } 00444 if (!did_child) {_nodes[this_one].right = NULL;} 00445 00446 } 00447 00448 00449 00450 //---------------------------------------------------------------------- 00451 template<class T> void SearchTree<T>::remove(unsigned int node_index) { 00452 remove(&(_nodes[node_index])); 00453 } 00454 00455 //---------------------------------------------------------------------- 00456 template<class T> void SearchTree<T>::remove(circulator & circ) { 00457 remove(circ._node); 00458 } 00459 00460 //---------------------------------------------------------------------- 00461 // Useful reference for this: 00462 // http://en.wikipedia.org/wiki/Binary_search_tree#Deletion 00463 template<class T> void SearchTree<T>::remove(typename SearchTree<T>::Node * node) { 00464 00465 // we don't remove things from the tree if we've reached the last 00466 // elements... (is this wise?) 00467 assert(size() > 1); // switch this to throw...? 00468 assert(!node->treelinks_null()); 00469 00470 // deal with relinking predecessor and successor 00471 node->predecessor->successor = node->successor; 00472 node->successor->predecessor = node->predecessor; 00473 00474 if (node->left == NULL && node->right == NULL) { 00475 // node has no children, so remove it by nullifying the pointer 00476 // from the parent 00477 node->reset_parents_link_to_me(NULL); 00478 00479 } else if (node->left != NULL && node->right == NULL){ 00480 // make parent point to my child 00481 node->reset_parents_link_to_me(node->left); 00482 // and child to parent 00483 node->left->parent = node->parent; 00484 // sort out the top node... 00485 if (_top_node == node) {_top_node = node->left;} 00486 00487 } else if (node->left == NULL && node->right != NULL){ 00488 // make parent point to my child 00489 node->reset_parents_link_to_me(node->right); 00490 // and child to parent 00491 node->right->parent = node->parent; 00492 // sort out the top node... 00493 if (_top_node == node) {_top_node = node->right;} 00494 00495 } else { 00496 // we have two children; we will put a replacement in our place 00497 Node * replacement; 00498 //SearchTree<T>::Node * replacements_child; 00499 // chose predecessor or successor (one, then other, then first, etc...) 00500 bool use_predecessor = (_n_removes % 2 == 1); 00501 if (use_predecessor) { 00502 // Option 1: put predecessor in our place, and have its parent 00503 // point to its left child (as a predecessor it has no right child) 00504 replacement = node->predecessor; 00505 assert(replacement->right == NULL); // guaranteed if it's our predecessor 00506 // we have to be careful of replacing certain links when the 00507 // replacement is this node's child 00508 if (replacement != node->left) { 00509 if (replacement->left != NULL) { 00510 replacement->left->parent = replacement->parent;} 00511 replacement->reset_parents_link_to_me(replacement->left); 00512 replacement->left = node->left; 00513 } 00514 replacement->parent = node->parent; 00515 replacement->right = node->right; 00516 } else { 00517 // Option 2: put successor in our place, and have its parent 00518 // point to its right child (as a successor it has no left child) 00519 replacement = node->successor; 00520 assert(replacement->left == NULL); // guaranteed if it's our successor 00521 if (replacement != node->right) { 00522 if (replacement->right != NULL) { 00523 replacement->right->parent = replacement->parent;} 00524 replacement->reset_parents_link_to_me(replacement->right); 00525 replacement->right = node->right; 00526 } 00527 replacement->parent = node->parent; 00528 replacement->left = node->left; 00529 } 00530 node->reset_parents_link_to_me(replacement); 00531 00532 // make sure node's original children now point to the replacement 00533 if (node->left != replacement) {node->left->parent = replacement;} 00534 if (node->right != replacement) {node->right->parent = replacement;} 00535 00536 // sort out the top node... 00537 if (_top_node == node) {_top_node = replacement;} 00538 } 00539 00540 // make sure we leave something nice and clean... 00541 node->nullify_treelinks(); 00542 node->predecessor = NULL; 00543 node->successor = NULL; 00544 00545 // for bookkeeping (and choosing whether to use pred. or succ.) 00546 _n_removes++; 00547 // for when we next need access to a free node... 00548 _available_nodes.push_back(node); 00549 } 00550 00551 00552 //---------------------------------------------------------------------- 00553 //template<class T> typename SearchTree<T>::Node * SearchTree<T>::insert(const T & value) { 00554 00555 //---------------------------------------------------------------------- 00556 template<class T> typename SearchTree<T>::circulator SearchTree<T>::insert(const T & value) { 00557 // make sure we don't exceed allowed number of nodes... 00558 assert(_available_nodes.size() > 0); 00559 00560 Node * node = _available_nodes.back(); 00561 _available_nodes.pop_back(); 00562 node->value = value; 00563 00564 Node * location = _top_node; 00565 Node * old_location = NULL; 00566 bool on_left = true; // (init not needed -- but soothes g++4) 00567 // work through tree until we reach its end 00568 #ifdef __FASTJET_SEARCHTREE_TRACK_DEPTH 00569 unsigned int depth = 0; 00570 #endif 00571 while(location != NULL) { 00572 #ifdef __FASTJET_SEARCHTREE_TRACK_DEPTH 00573 depth++; 00574 #endif 00575 old_location = location; 00576 on_left = value < location->value; 00577 if (on_left) {location = location->left;} 00578 else {location = location->right;} 00579 } 00580 #ifdef __FASTJET_SEARCHTREE_TRACK_DEPTH 00581 _max_depth = max(depth, _max_depth); 00582 #endif 00583 // now create tree links 00584 node->parent = old_location; 00585 if (on_left) {node->parent->left = node;} 00586 else {node->parent->right = node;} 00587 node->left = NULL; 00588 node->right = NULL; 00589 // and create predecessor / successor links 00590 node->predecessor = _find_predecessor(node); 00591 if (node->predecessor != NULL) { 00592 // it exists, so make use of its info (will include a cyclic case, 00593 // when successor is round the bend) 00594 node->successor = node->predecessor->successor; 00595 node->predecessor->successor = node; 00596 node->successor->predecessor = node; 00597 } else { 00598 // deal with case when we are left-most edge of tree (then successor 00599 // will exist...) 00600 node->successor = _find_successor(node); 00601 assert(node->successor != NULL); // can only happen if we're sole element 00602 // (but not allowed, since tree size>=1) 00603 node->predecessor = node->successor->predecessor; 00604 node->successor->predecessor = node; 00605 node->predecessor->successor = node; 00606 } 00607 00608 return circulator(node); 00609 } 00610 00611 00612 //---------------------------------------------------------------------- 00613 template<class T> void SearchTree<T>::verify_structure() { 00614 00615 // do a check running through all elements 00616 verify_structure_linear(); 00617 00618 // do a recursive check down tree from top 00619 00620 // first establish the extremities 00621 const Node * left_limit = _top_node; 00622 while (left_limit->left != NULL) {left_limit = left_limit->left;} 00623 const Node * right_limit = _top_node; 00624 while (right_limit->right != NULL) {right_limit = right_limit->right;} 00625 00626 // then actually do recursion 00627 verify_structure_recursive(_top_node, left_limit, right_limit); 00628 } 00629 00630 00631 //---------------------------------------------------------------------- 00632 template<class T> void SearchTree<T>::verify_structure_recursive( 00633 const typename SearchTree<T>::Node * element, 00634 const typename SearchTree<T>::Node * left_limit, 00635 const typename SearchTree<T>::Node * right_limit) const { 00636 00637 assert(!(element->value < left_limit->value)); 00638 assert(!(right_limit->value < element->value)); 00639 00640 const Node * left = element->left; 00641 if (left != NULL) { 00642 assert(!(element->value < left->value)); 00643 if (left != left_limit) { 00644 // recurse down the tree with this element as the right-hand limit 00645 verify_structure_recursive(left, left_limit, element);} 00646 } 00647 00648 const Node * right = element->right; 00649 if (right != NULL) { 00650 assert(!(right->value < element->value)); 00651 if (right != right_limit) { 00652 // recurse down the tree with this element as the left-hand limit 00653 verify_structure_recursive(right, element, right_limit);} 00654 } 00655 } 00656 00657 //---------------------------------------------------------------------- 00658 template<class T> void SearchTree<T>::verify_structure_linear() const { 00659 00660 //print_elements(); 00661 00662 unsigned n_top = 0; 00663 unsigned n_null = 0; 00664 for(unsigned i = 0; i < _nodes.size(); i++) { 00665 const typename SearchTree<T>::Node * node = &(_nodes[i]); 00666 // make sure node is defined 00667 if (node->treelinks_null()) {n_null++; continue;} 00668 00669 // make sure of the number of "top" nodes 00670 if (node->parent == NULL) { 00671 n_top++; 00672 //assert(node->left != NULL); 00673 //assert(node->right != NULL); 00674 } else { 00675 // make sure that I am a child of my parent... 00676 //assert((node->parent->left == node) || (node->parent->right == node)); 00677 assert((node->parent->left == node) ^ (node->parent->right == node)); 00678 } 00679 00680 // when there is a left child make sure it's value is ordered 00681 // (note use of !(b<a), to allow for a<=b while using just the < 00682 // operator) 00683 if (node->left != NULL) { 00684 assert(!(node->value < node->left->value ));} 00685 00686 // when there is a right child make sure it's value is ordered 00687 if (node->right != NULL) { 00688 assert(!(node->right->value < node->value ));} 00689 00690 } 00691 assert(n_top == 1 || (n_top == 0 && size() <= 1) ); 00692 assert(n_null == _available_nodes.size() || 00693 (n_null == _available_nodes.size() + 1 && size() == 1)); 00694 } 00695 00696 00697 //---------------------------------------------------------------------- 00698 template<class T> typename SearchTree<T>::Node * SearchTree<T>::_find_predecessor(const typename SearchTree<T>::Node * node) { 00699 00700 typename SearchTree<T>::Node * newnode; 00701 if (node->left != NULL) { 00702 // go down left, and then down right as far as possible. 00703 newnode = node->left; 00704 while(newnode->right != NULL) {newnode = newnode->right;} 00705 return newnode; 00706 } else { 00707 const typename SearchTree<T>::Node * lastnode = node; 00708 newnode = node->parent; 00709 // go up the tree as long as we're going right (when we go left then 00710 // we've found something smaller, so stop) 00711 while(newnode != NULL) { 00712 if (newnode->right == lastnode) {return newnode;} 00713 lastnode = newnode; 00714 newnode = newnode->parent; 00715 } 00716 return newnode; 00717 } 00718 } 00719 00720 00721 //---------------------------------------------------------------------- 00722 template<class T> typename SearchTree<T>::Node * SearchTree<T>::_find_successor(const typename SearchTree<T>::Node * node) { 00723 00724 typename SearchTree<T>::Node * newnode; 00725 if (node->right != NULL) { 00726 // go down right, and then down left as far as possible. 00727 newnode = node->right; 00728 while(newnode->left != NULL) {newnode = newnode->left;} 00729 return newnode; 00730 } else { 00731 const typename SearchTree<T>::Node * lastnode = node; 00732 newnode = node->parent; 00733 // go up the tree as long as we're going left (when we go right then 00734 // we've found something larger, so stop) 00735 while(newnode != NULL) { 00736 if (newnode->left == lastnode) {return newnode;} 00737 lastnode = newnode; 00738 newnode = newnode->parent; 00739 } 00740 return newnode; 00741 } 00742 } 00743 00744 00745 //---------------------------------------------------------------------- 00746 // print out all the elements for visual checking... 00747 template<class T> void SearchTree<T>::print_elements() { 00748 typename SearchTree<T>::Node * base_node = &(_nodes[0]); 00749 typename SearchTree<T>::Node * node = base_node; 00750 00751 int n = _nodes.size(); 00752 for(; node - base_node < n ; node++) { 00753 printf("%4d parent:%4d left:%4d right:%4d pred:%4d succ:%4d value:%10.6f\n",loc(node), loc(node->parent), loc(node->left), loc(node->right), loc(node->predecessor),loc(node->successor),node->value); 00754 } 00755 } 00756 00757 //---------------------------------------------------------------------- 00758 template<class T> typename SearchTree<T>::circulator SearchTree<T>::somewhere() { 00759 return circulator(_top_node); 00760 } 00761 00762 00763 //---------------------------------------------------------------------- 00764 template<class T> typename SearchTree<T>::const_circulator SearchTree<T>::somewhere() const { 00765 return const_circulator(_top_node); 00766 } 00767 00768 00769 FASTJET_END_NAMESPACE 00770 00771 #endif // __FASTJET_SEARCHTREE_HH__