FastJet 3.0.6
|
00001 //STARTHEADER 00002 // $Id: Selector.cc 3071 2013-04-01 12:52:46Z cacciari $ 00003 // 00004 // Copyright (c) 2005-2011, Matteo Cacciari, Gavin P. Salam and Gregory Soyez 00005 // 00006 //---------------------------------------------------------------------- 00007 // This file is part of FastJet. 00008 // 00009 // FastJet is free software; you can redistribute it and/or modify 00010 // it under the terms of the GNU General Public License as published by 00011 // the Free Software Foundation; either version 2 of the License, or 00012 // (at your option) any later version. 00013 // 00014 // The algorithms that underlie FastJet have required considerable 00015 // development and are described in hep-ph/0512210. If you use 00016 // FastJet as part of work towards a scientific publication, please 00017 // include a citation to the FastJet paper. 00018 // 00019 // FastJet is distributed in the hope that it will be useful, 00020 // but WITHOUT ANY WARRANTY; without even the implied warranty of 00021 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00022 // GNU General Public License for more details. 00023 // 00024 // You should have received a copy of the GNU General Public License 00025 // along with FastJet. If not, see <http://www.gnu.org/licenses/>. 00026 //---------------------------------------------------------------------- 00027 //ENDHEADER 00028 00029 00030 #include <sstream> 00031 #include <algorithm> 00032 #include "fastjet/Selector.hh" 00033 #ifndef __FJCORE__ 00034 #include "fastjet/GhostedAreaSpec.hh" // for area support 00035 #endif // __FJCORE__ 00036 00037 using namespace std; 00038 00039 FASTJET_BEGIN_NAMESPACE // defined in fastjet/internal/base.hh 00040 00041 //---------------------------------------------------------------------- 00042 // implementations of some of the more complex bits of Selector 00043 //---------------------------------------------------------------------- 00044 00045 // implementation of the operator() acting on a vector of jets 00046 std::vector<PseudoJet> Selector::operator()(const std::vector<PseudoJet> & jets) const { 00047 std::vector<PseudoJet> result; 00048 const SelectorWorker * worker_local = validated_worker(); 00049 if (worker_local->applies_jet_by_jet()) { 00050 //if (false) { 00051 // for workers that apply jet by jet, this is more efficient 00052 for (std::vector<PseudoJet>::const_iterator jet = jets.begin(); 00053 jet != jets.end(); jet++) { 00054 if (worker_local->pass(*jet)) result.push_back(*jet); 00055 } 00056 } else { 00057 // for workers that can only be applied to entire vectors, 00058 // go through the following 00059 std::vector<const PseudoJet *> jetptrs(jets.size()); 00060 for (unsigned i = 0; i < jets.size(); i++) { 00061 jetptrs[i] = & jets[i]; 00062 } 00063 worker_local->terminator(jetptrs); 00064 for (unsigned i = 0; i < jetptrs.size(); i++) { 00065 if (jetptrs[i]) result.push_back(jets[i]); 00066 } 00067 } 00068 return result; 00069 } 00070 00071 00072 //---------------------------------------------------------------------- 00073 // count the number of jets that pass the cuts 00074 unsigned int Selector::count(const std::vector<PseudoJet> & jets) const { 00075 unsigned n = 0; 00076 const SelectorWorker * worker_local = validated_worker(); 00077 00078 // separate strategies according to whether the worker applies jet by jet 00079 if (worker_local->applies_jet_by_jet()) { 00080 for (unsigned i = 0; i < jets.size(); i++) { 00081 if (worker_local->pass(jets[i])) n++; 00082 } 00083 } else { 00084 std::vector<const PseudoJet *> jetptrs(jets.size()); 00085 for (unsigned i = 0; i < jets.size(); i++) { 00086 jetptrs[i] = & jets[i]; 00087 } 00088 worker_local->terminator(jetptrs); 00089 for (unsigned i = 0; i < jetptrs.size(); i++) { 00090 if (jetptrs[i]) n++; 00091 } 00092 } 00093 00094 return n; 00095 } 00096 00097 00098 //---------------------------------------------------------------------- 00099 // sift the input jets into two vectors -- those that pass the selector 00100 // and those that do not 00101 void Selector::sift(const std::vector<PseudoJet> & jets, 00102 std::vector<PseudoJet> & jets_that_pass, 00103 std::vector<PseudoJet> & jets_that_fail 00104 ) const { 00105 const SelectorWorker * worker_local = validated_worker(); 00106 00107 jets_that_pass.clear(); 00108 jets_that_fail.clear(); 00109 00110 // separate strategies according to whether the worker applies jet by jet 00111 if (worker_local->applies_jet_by_jet()) { 00112 for (unsigned i = 0; i < jets.size(); i++) { 00113 if (worker_local->pass(jets[i])) { 00114 jets_that_pass.push_back(jets[i]); 00115 } else { 00116 jets_that_fail.push_back(jets[i]); 00117 } 00118 } 00119 } else { 00120 std::vector<const PseudoJet *> jetptrs(jets.size()); 00121 for (unsigned i = 0; i < jets.size(); i++) { 00122 jetptrs[i] = & jets[i]; 00123 } 00124 worker_local->terminator(jetptrs); 00125 for (unsigned i = 0; i < jetptrs.size(); i++) { 00126 if (jetptrs[i]) { 00127 jets_that_pass.push_back(jets[i]); 00128 } else { 00129 jets_that_fail.push_back(jets[i]); 00130 } 00131 } 00132 } 00133 } 00134 00135 #ifndef __FJCORE__ 00136 // area using default ghost area 00137 double Selector::area() const{ 00138 return area(gas::def_ghost_area); 00139 } 00140 00141 // implementation of the Selector's area function 00142 double Selector::area(double ghost_area) const{ 00143 if (! is_geometric()) throw InvalidArea(); 00144 00145 // has area will already check we've got a valid worker 00146 if (_worker->has_known_area()) return _worker->known_area(); 00147 00148 // generate a set of "ghosts" 00149 double rapmin, rapmax; 00150 get_rapidity_extent(rapmin, rapmax); 00151 GhostedAreaSpec ghost_spec(rapmin, rapmax, 1, ghost_area); 00152 std::vector<PseudoJet> ghosts; 00153 ghost_spec.add_ghosts(ghosts); 00154 00155 // check what passes the selection 00156 return ghost_spec.ghost_area() * ((*this)(ghosts)).size(); 00157 } 00158 #endif // __FJCORE__ 00159 00160 00161 //---------------------------------------------------------------------- 00162 // implementations of some of the more complex bits of SelectorWorker 00163 //---------------------------------------------------------------------- 00164 // check if it has a finite area 00165 bool SelectorWorker::has_finite_area() const { 00166 if (! is_geometric()) return false; 00167 double rapmin, rapmax; 00168 get_rapidity_extent(rapmin, rapmax); 00169 return (rapmax != std::numeric_limits<double>::infinity()) 00170 && (-rapmin != std::numeric_limits<double>::infinity()); 00171 } 00172 00173 00174 00175 //---------------------------------------------------------------------- 00176 // very basic set of selectors (at the moment just the identity!) 00177 //---------------------------------------------------------------------- 00178 00179 //---------------------------------------------------------------------- 00180 /// helper for selecting the n hardest jets 00181 class SW_Identity : public SelectorWorker { 00182 public: 00183 /// ctor with specification of the number of objects to keep 00184 SW_Identity(){} 00185 00186 /// just let everything pass 00187 virtual bool pass(const PseudoJet &) const { 00188 return true; 00189 } 00190 00191 /// For each jet that does not pass the cuts, this routine sets the 00192 /// pointer to 0. 00193 virtual void terminator(vector<const PseudoJet *> &) const { 00194 // everything passes, hence nothing to nullify 00195 return; 00196 } 00197 00198 /// returns a description of the worker 00199 virtual string description() const { return "Identity";} 00200 00201 /// strictly speaking, this is geometric 00202 virtual bool is_geometric() const { return true;} 00203 }; 00204 00205 00206 // returns an "identity" selector that lets everything pass 00207 Selector SelectorIdentity() { 00208 return Selector(new SW_Identity); 00209 } 00210 00211 00212 //---------------------------------------------------------------------- 00213 // selector and workers for operators 00214 //---------------------------------------------------------------------- 00215 00216 //---------------------------------------------------------------------- 00217 /// helper for combining selectors with a logical not 00218 class SW_Not : public SelectorWorker { 00219 public: 00220 /// ctor 00221 SW_Not(const Selector & s) : _s(s) {} 00222 00223 /// return a copy of the current object 00224 virtual SelectorWorker* copy(){ return new SW_Not(*this);} 00225 00226 /// returns true if a given object passes the selection criterium 00227 /// this has to be overloaded by derived workers 00228 virtual bool pass(const PseudoJet & jet) const { 00229 // make sure that the "pass" can be applied on both selectors 00230 if (!applies_jet_by_jet()) 00231 throw Error("Cannot apply this selector worker to an individual jet"); 00232 00233 return ! _s.pass(jet); 00234 } 00235 00236 /// returns true if this can be applied jet by jet 00237 virtual bool applies_jet_by_jet() const {return _s.applies_jet_by_jet();} 00238 00239 /// select the jets in the list that pass both selectors 00240 virtual void terminator(vector<const PseudoJet *> & jets) const { 00241 // if we can apply the selector jet-by-jet, call the base selector 00242 // that does exactly that 00243 if (applies_jet_by_jet()){ 00244 SelectorWorker::terminator(jets); 00245 return; 00246 } 00247 00248 // check the effect of the selector we want to negate 00249 vector<const PseudoJet *> s_jets = jets; 00250 _s.worker()->terminator(s_jets); 00251 00252 // now apply the negation: all the jets that pass the base 00253 // selector (i.e. are not NULL) have to be set to NULL 00254 for (unsigned int i=0; i<s_jets.size(); i++){ 00255 if (s_jets[i]) jets[i] = NULL; 00256 } 00257 } 00258 00259 /// returns a description of the worker 00260 virtual string description() const { 00261 ostringstream ostr; 00262 ostr << "!(" << _s.description() << ")"; 00263 return ostr.str(); 00264 } 00265 00266 /// is geometric if the underlying selector is 00267 virtual bool is_geometric() const { return _s.is_geometric();} 00268 00269 /// returns true if the worker can be set_referenced 00270 virtual bool takes_reference() const { return _s.takes_reference();} 00271 00272 /// set the reference jet for this selector 00273 virtual void set_reference(const PseudoJet &ref) { _s.set_reference(ref);} 00274 00275 protected: 00276 Selector _s; 00277 }; 00278 00279 00280 // logical not applied on a selector 00281 Selector operator!(const Selector & s) { 00282 return Selector(new SW_Not(s)); 00283 } 00284 00285 00286 //---------------------------------------------------------------------- 00287 /// Base class for binary operators 00288 class SW_BinaryOperator: public SelectorWorker { 00289 public: 00290 /// ctor 00291 SW_BinaryOperator(const Selector & s1, const Selector & s2) : _s1(s1), _s2(s2) { 00292 // stores info for more efficient access to the selector's properties 00293 00294 // we can apply jet by jet only if this is the case for both sub-selectors 00295 _applies_jet_by_jet = _s1.applies_jet_by_jet() && _s2.applies_jet_by_jet(); 00296 00297 // the selector takes a reference if either of the sub-selectors does 00298 _takes_reference = _s1.takes_reference() || _s2.takes_reference(); 00299 00300 // we have a well-defined area provided the two objects have one 00301 _is_geometric = _s1.is_geometric() && _s2.is_geometric(); 00302 } 00303 00304 /// returns true if this can be applied jet by jet 00305 virtual bool applies_jet_by_jet() const {return _applies_jet_by_jet;} 00306 00307 /// returns true if this takes a reference jet 00308 virtual bool takes_reference() const{ 00309 return _takes_reference; 00310 } 00311 00312 /// sets the reference jet 00313 virtual void set_reference(const PseudoJet ¢re){ 00314 _s1.set_reference(centre); 00315 _s2.set_reference(centre); 00316 } 00317 00318 /// check if it has a finite area 00319 virtual bool is_geometric() const { return _is_geometric;} 00320 00321 protected: 00322 Selector _s1, _s2; 00323 bool _applies_jet_by_jet; 00324 bool _takes_reference; 00325 bool _is_geometric; 00326 }; 00327 00328 00329 00330 //---------------------------------------------------------------------- 00331 /// helper for combining selectors with a logical and 00332 class SW_And: public SW_BinaryOperator { 00333 public: 00334 /// ctor 00335 SW_And(const Selector & s1, const Selector & s2) : SW_BinaryOperator(s1,s2){} 00336 00337 /// return a copy of this 00338 virtual SelectorWorker* copy(){ return new SW_And(*this);} 00339 00340 /// returns true if a given object passes the selection criterium 00341 /// this has to be overloaded by derived workers 00342 virtual bool pass(const PseudoJet & jet) const { 00343 // make sure that the "pass" can be applied on both selectors 00344 if (!applies_jet_by_jet()) 00345 throw Error("Cannot apply this selector worker to an individual jet"); 00346 00347 return _s1.pass(jet) && _s2.pass(jet); 00348 } 00349 00350 /// select the jets in the list that pass both selectors 00351 virtual void terminator(vector<const PseudoJet *> & jets) const { 00352 // if we can apply the selector jet-by-jet, call the base selector 00353 // that does exactly that 00354 if (applies_jet_by_jet()){ 00355 SelectorWorker::terminator(jets); 00356 return; 00357 } 00358 00359 // check the effect of the first selector 00360 vector<const PseudoJet *> s1_jets = jets; 00361 _s1.worker()->terminator(s1_jets); 00362 00363 // apply the second 00364 _s2.worker()->terminator(jets); 00365 00366 // terminate the jets that wiuld be terminated by _s1 00367 for (unsigned int i=0; i<jets.size(); i++){ 00368 if (! s1_jets[i]) jets[i] = NULL; 00369 } 00370 } 00371 00372 /// returns the rapidity range for which it may return "true" 00373 virtual void get_rapidity_extent(double & rapmin, double & rapmax) const { 00374 double s1min, s1max, s2min, s2max; 00375 _s1.get_rapidity_extent(s1min, s1max); 00376 _s2.get_rapidity_extent(s2min, s2max); 00377 rapmax = min(s1max, s2max); 00378 rapmin = max(s1min, s2min); 00379 } 00380 00381 /// returns a description of the worker 00382 virtual string description() const { 00383 ostringstream ostr; 00384 ostr << "(" << _s1.description() << " && " << _s2.description() << ")"; 00385 return ostr.str(); 00386 } 00387 }; 00388 00389 00390 // logical and between two selectors 00391 Selector operator&&(const Selector & s1, const Selector & s2) { 00392 return Selector(new SW_And(s1,s2)); 00393 } 00394 00395 00396 00397 //---------------------------------------------------------------------- 00398 /// helper for combining selectors with a logical or 00399 class SW_Or: public SW_BinaryOperator { 00400 public: 00401 /// ctor 00402 SW_Or(const Selector & s1, const Selector & s2) : SW_BinaryOperator(s1,s2) {} 00403 00404 /// return a copy of this 00405 virtual SelectorWorker* copy(){ return new SW_Or(*this);} 00406 00407 /// returns true if a given object passes the selection criterium 00408 /// this has to be overloaded by derived workers 00409 virtual bool pass(const PseudoJet & jet) const { 00410 // make sure that the "pass" can be applied on both selectors 00411 if (!applies_jet_by_jet()) 00412 throw Error("Cannot apply this selector worker to an individual jet"); 00413 00414 return _s1.pass(jet) || _s2.pass(jet); 00415 } 00416 00417 /// returns true if this can be applied jet by jet 00418 virtual bool applies_jet_by_jet() const { 00419 // watch out, even though it's the "OR" selector, to be applied jet 00420 // by jet, both the base selectors need to be jet-by-jet-applicable, 00421 // so the use of a && in the line below 00422 return _s1.applies_jet_by_jet() && _s2.applies_jet_by_jet(); 00423 } 00424 00425 /// select the jets in the list that pass both selectors 00426 virtual void terminator(vector<const PseudoJet *> & jets) const { 00427 // if we can apply the selector jet-by-jet, call the base selector 00428 // that does exactly that 00429 if (applies_jet_by_jet()){ 00430 SelectorWorker::terminator(jets); 00431 return; 00432 } 00433 00434 // check the effect of the first selector 00435 vector<const PseudoJet *> s1_jets = jets; 00436 _s1.worker()->terminator(s1_jets); 00437 00438 // apply the second 00439 _s2.worker()->terminator(jets); 00440 00441 // resurrect any jet that has been terminated by the second one 00442 // and not by the first one 00443 for (unsigned int i=0; i<jets.size(); i++){ 00444 if (s1_jets[i]) jets[i] = s1_jets[i]; 00445 } 00446 } 00447 00448 /// returns a description of the worker 00449 virtual string description() const { 00450 ostringstream ostr; 00451 ostr << "(" << _s1.description() << " || " << _s2.description() << ")"; 00452 return ostr.str(); 00453 } 00454 00455 /// returns the rapidity range for which it may return "true" 00456 virtual void get_rapidity_extent(double & rapmin, double & rapmax) const { 00457 double s1min, s1max, s2min, s2max; 00458 _s1.get_rapidity_extent(s1min, s1max); 00459 _s2.get_rapidity_extent(s2min, s2max); 00460 rapmax = max(s1max, s2max); 00461 rapmin = min(s1min, s2min); 00462 } 00463 }; 00464 00465 00466 // logical or between two selectors 00467 Selector operator ||(const Selector & s1, const Selector & s2) { 00468 return Selector(new SW_Or(s1,s2)); 00469 } 00470 00471 //---------------------------------------------------------------------- 00472 /// helper for multiplying two selectors (in an operator-like way) 00473 class SW_Mult: public SW_And { 00474 public: 00475 /// ctor 00476 SW_Mult(const Selector & s1, const Selector & s2) : SW_And(s1,s2) {} 00477 00478 /// return a copy of this 00479 virtual SelectorWorker* copy(){ return new SW_Mult(*this);} 00480 00481 /// select the jets in the list that pass both selectors 00482 virtual void terminator(vector<const PseudoJet *> & jets) const { 00483 // if we can apply the selector jet-by-jet, call the base selector 00484 // that does exactly that 00485 if (applies_jet_by_jet()){ 00486 SelectorWorker::terminator(jets); 00487 return; 00488 } 00489 00490 // first apply _s2 00491 _s2.worker()->terminator(jets); 00492 00493 // then apply _s1 00494 _s1.worker()->terminator(jets); 00495 } 00496 00497 /// returns a description of the worker 00498 virtual string description() const { 00499 ostringstream ostr; 00500 ostr << "(" << _s1.description() << " * " << _s2.description() << ")"; 00501 return ostr.str(); 00502 } 00503 }; 00504 00505 00506 // logical and between two selectors 00507 Selector operator*(const Selector & s1, const Selector & s2) { 00508 return Selector(new SW_Mult(s1,s2)); 00509 } 00510 00511 00512 //---------------------------------------------------------------------- 00513 // selector and workers for kinematic cuts 00514 //---------------------------------------------------------------------- 00515 00516 //---------------------------------------------------------------------- 00517 // a series of basic classes that allow easy implementations of 00518 // min, max and ranges on a quantity-to-be-defined 00519 00520 // generic holder for a quantity 00521 class QuantityBase{ 00522 public: 00523 QuantityBase(double q) : _q(q){} 00524 virtual ~QuantityBase(){} 00525 virtual double operator()(const PseudoJet & jet ) const =0; 00526 virtual string description() const =0; 00527 virtual bool is_geometric() const { return false;} 00528 virtual double comparison_value() const {return _q;} 00529 virtual double description_value() const {return comparison_value();} 00530 protected: 00531 double _q; 00532 }; 00533 00534 // generic holder for a squared quantity 00535 class QuantitySquareBase : public QuantityBase{ 00536 public: 00537 QuantitySquareBase(double sqrtq) : QuantityBase(sqrtq*sqrtq), _sqrtq(sqrtq){} 00538 virtual double description_value() const {return _sqrtq;} 00539 protected: 00540 double _sqrtq; 00541 }; 00542 00543 // generic_quantity >= minimum 00544 template<typename QuantityType> 00545 class SW_QuantityMin : public SelectorWorker{ 00546 public: 00547 /// detfault ctor (initialises the pt cut) 00548 SW_QuantityMin(double qmin) : _qmin(qmin) {} 00549 00550 /// returns true is the given object passes the selection pt cut 00551 virtual bool pass(const PseudoJet & jet) const {return _qmin(jet) >= _qmin.comparison_value();} 00552 00553 /// returns a description of the worker 00554 virtual string description() const { 00555 ostringstream ostr; 00556 ostr << _qmin.description() << " >= " << _qmin.description_value(); 00557 return ostr.str(); 00558 } 00559 00560 virtual bool is_geometric() const { return _qmin.is_geometric();} 00561 00562 protected: 00563 QuantityType _qmin; ///< the cut 00564 }; 00565 00566 00567 // generic_quantity <= maximum 00568 template<typename QuantityType> 00569 class SW_QuantityMax : public SelectorWorker { 00570 public: 00571 /// detfault ctor (initialises the pt cut) 00572 SW_QuantityMax(double qmax) : _qmax(qmax) {} 00573 00574 /// returns true is the given object passes the selection pt cut 00575 virtual bool pass(const PseudoJet & jet) const {return _qmax(jet) <= _qmax.comparison_value();} 00576 00577 /// returns a description of the worker 00578 virtual string description() const { 00579 ostringstream ostr; 00580 ostr << _qmax.description() << " <= " << _qmax.description_value(); 00581 return ostr.str(); 00582 } 00583 00584 virtual bool is_geometric() const { return _qmax.is_geometric();} 00585 00586 protected: 00587 QuantityType _qmax; ///< the cut 00588 }; 00589 00590 00591 // generic quantity in [minimum:maximum] 00592 template<typename QuantityType> 00593 class SW_QuantityRange : public SelectorWorker { 00594 public: 00595 /// detfault ctor (initialises the pt cut) 00596 SW_QuantityRange(double qmin, double qmax) : _qmin(qmin), _qmax(qmax) {} 00597 00598 /// returns true is the given object passes the selection pt cut 00599 virtual bool pass(const PseudoJet & jet) const { 00600 double q = _qmin(jet); // we could identically use _qmax 00601 return (q >= _qmin.comparison_value()) && (q <= _qmax.comparison_value()); 00602 } 00603 00604 /// returns a description of the worker 00605 virtual string description() const { 00606 ostringstream ostr; 00607 ostr << _qmin.description_value() << " <= " << _qmin.description() << " <= " << _qmax.description_value(); 00608 return ostr.str(); 00609 } 00610 00611 virtual bool is_geometric() const { return _qmin.is_geometric();} 00612 00613 protected: 00614 QuantityType _qmin; // the lower cut 00615 QuantityType _qmax; // the upper cut 00616 }; 00617 00618 00619 //---------------------------------------------------------------------- 00620 /// helper class for selecting on pt 00621 class QuantityPt2 : public QuantitySquareBase{ 00622 public: 00623 QuantityPt2(double pt) : QuantitySquareBase(pt){} 00624 virtual double operator()(const PseudoJet & jet ) const { return jet.perp2();} 00625 virtual string description() const {return "pt";} 00626 }; 00627 00628 // returns a selector for a minimum pt 00629 Selector SelectorPtMin(double ptmin) { 00630 return Selector(new SW_QuantityMin<QuantityPt2>(ptmin)); 00631 } 00632 00633 // returns a selector for a maximum pt 00634 Selector SelectorPtMax(double ptmax) { 00635 return Selector(new SW_QuantityMax<QuantityPt2>(ptmax)); 00636 } 00637 00638 // returns a selector for a pt range 00639 Selector SelectorPtRange(double ptmin, double ptmax) { 00640 return Selector(new SW_QuantityRange<QuantityPt2>(ptmin, ptmax)); 00641 } 00642 00643 00644 //---------------------------------------------------------------------- 00645 /// helper class for selecting on transverse energy 00646 class QuantityEt2 : public QuantitySquareBase{ 00647 public: 00648 QuantityEt2(double Et) : QuantitySquareBase(Et){} 00649 virtual double operator()(const PseudoJet & jet ) const { return jet.Et2();} 00650 virtual string description() const {return "Et";} 00651 }; 00652 00653 // returns a selector for a minimum Et 00654 Selector SelectorEtMin(double Etmin) { 00655 return Selector(new SW_QuantityMin<QuantityEt2>(Etmin)); 00656 } 00657 00658 // returns a selector for a maximum Et 00659 Selector SelectorEtMax(double Etmax) { 00660 return Selector(new SW_QuantityMax<QuantityEt2>(Etmax)); 00661 } 00662 00663 // returns a selector for a Et range 00664 Selector SelectorEtRange(double Etmin, double Etmax) { 00665 return Selector(new SW_QuantityRange<QuantityEt2>(Etmin, Etmax)); 00666 } 00667 00668 00669 //---------------------------------------------------------------------- 00670 /// helper class for selecting on energy 00671 class QuantityE : public QuantityBase{ 00672 public: 00673 QuantityE(double E) : QuantityBase(E){} 00674 virtual double operator()(const PseudoJet & jet ) const { return jet.E();} 00675 virtual string description() const {return "E";} 00676 }; 00677 00678 // returns a selector for a minimum E 00679 Selector SelectorEMin(double Emin) { 00680 return Selector(new SW_QuantityMin<QuantityE>(Emin)); 00681 } 00682 00683 // returns a selector for a maximum E 00684 Selector SelectorEMax(double Emax) { 00685 return Selector(new SW_QuantityMax<QuantityE>(Emax)); 00686 } 00687 00688 // returns a selector for a E range 00689 Selector SelectorERange(double Emin, double Emax) { 00690 return Selector(new SW_QuantityRange<QuantityE>(Emin, Emax)); 00691 } 00692 00693 00694 //---------------------------------------------------------------------- 00695 /// helper class for selecting on mass 00696 class QuantityM2 : public QuantitySquareBase{ 00697 public: 00698 QuantityM2(double m) : QuantitySquareBase(m){} 00699 virtual double operator()(const PseudoJet & jet ) const { return jet.m2();} 00700 virtual string description() const {return "mass";} 00701 }; 00702 00703 // returns a selector for a minimum mass 00704 Selector SelectorMassMin(double mmin) { 00705 return Selector(new SW_QuantityMin<QuantityM2>(mmin)); 00706 } 00707 00708 // returns a selector for a maximum mass 00709 Selector SelectorMassMax(double mmax) { 00710 return Selector(new SW_QuantityMax<QuantityM2>(mmax)); 00711 } 00712 00713 // returns a selector for a mass range 00714 Selector SelectorMassRange(double mmin, double mmax) { 00715 return Selector(new SW_QuantityRange<QuantityM2>(mmin, mmax)); 00716 } 00717 00718 00719 00720 //---------------------------------------------------------------------- 00721 /// helper for selecting on rapidities: quantity 00722 class QuantityRap : public QuantityBase{ 00723 public: 00724 QuantityRap(double rap) : QuantityBase(rap){} 00725 virtual double operator()(const PseudoJet & jet ) const { return jet.rap();} 00726 virtual string description() const {return "rap";} 00727 virtual bool is_geometric() const { return true;} 00728 }; 00729 00730 00731 /// helper for selecting on rapidities: min 00732 class SW_RapMin : public SW_QuantityMin<QuantityRap>{ 00733 public: 00734 SW_RapMin(double rapmin) : SW_QuantityMin<QuantityRap>(rapmin){} 00735 virtual void get_rapidity_extent(double &rapmin, double & rapmax) const{ 00736 rapmax = std::numeric_limits<double>::max(); 00737 rapmin = _qmin.comparison_value(); 00738 } 00739 }; 00740 00741 /// helper for selecting on rapidities: max 00742 class SW_RapMax : public SW_QuantityMax<QuantityRap>{ 00743 public: 00744 SW_RapMax(double rapmax) : SW_QuantityMax<QuantityRap>(rapmax){} 00745 virtual void get_rapidity_extent(double &rapmin, double & rapmax) const{ 00746 rapmax = _qmax.comparison_value(); 00747 rapmin = -std::numeric_limits<double>::max(); 00748 } 00749 }; 00750 00751 /// helper for selecting on rapidities: range 00752 class SW_RapRange : public SW_QuantityRange<QuantityRap>{ 00753 public: 00754 SW_RapRange(double rapmin, double rapmax) : SW_QuantityRange<QuantityRap>(rapmin, rapmax){ 00755 assert(rapmin<=rapmax); 00756 } 00757 virtual void get_rapidity_extent(double &rapmin, double & rapmax) const{ 00758 rapmax = _qmax.comparison_value(); 00759 rapmin = _qmin.comparison_value(); 00760 } 00761 virtual bool has_known_area() const { return true;} ///< the area is analytically known 00762 virtual double known_area() const { 00763 return twopi * (_qmax.comparison_value()-_qmin.comparison_value()); 00764 } 00765 }; 00766 00767 // returns a selector for a minimum rapidity 00768 Selector SelectorRapMin(double rapmin) { 00769 return Selector(new SW_RapMin(rapmin)); 00770 } 00771 00772 // returns a selector for a maximum rapidity 00773 Selector SelectorRapMax(double rapmax) { 00774 return Selector(new SW_RapMax(rapmax)); 00775 } 00776 00777 // returns a selector for a rapidity range 00778 Selector SelectorRapRange(double rapmin, double rapmax) { 00779 return Selector(new SW_RapRange(rapmin, rapmax)); 00780 } 00781 00782 00783 //---------------------------------------------------------------------- 00784 /// helper for selecting on |rapidities| 00785 class QuantityAbsRap : public QuantityBase{ 00786 public: 00787 QuantityAbsRap(double absrap) : QuantityBase(absrap){} 00788 virtual double operator()(const PseudoJet & jet ) const { return abs(jet.rap());} 00789 virtual string description() const {return "|rap|";} 00790 virtual bool is_geometric() const { return true;} 00791 }; 00792 00793 00794 /// helper for selecting on |rapidities|: max 00795 class SW_AbsRapMax : public SW_QuantityMax<QuantityAbsRap>{ 00796 public: 00797 SW_AbsRapMax(double absrapmax) : SW_QuantityMax<QuantityAbsRap>(absrapmax){} 00798 virtual void get_rapidity_extent(double &rapmin, double & rapmax) const{ 00799 rapmax = _qmax.comparison_value(); 00800 rapmin = -_qmax.comparison_value(); 00801 } 00802 virtual bool has_known_area() const { return true;} ///< the area is analytically known 00803 virtual double known_area() const { 00804 return twopi * 2 * _qmax.comparison_value(); 00805 } 00806 }; 00807 00808 /// helper for selecting on |rapidities|: max 00809 class SW_AbsRapRange : public SW_QuantityRange<QuantityAbsRap>{ 00810 public: 00811 SW_AbsRapRange(double absrapmin, double absrapmax) : SW_QuantityRange<QuantityAbsRap>(absrapmin, absrapmax){} 00812 virtual void get_rapidity_extent(double &rapmin, double & rapmax) const{ 00813 rapmax = _qmax.comparison_value(); 00814 rapmin = -_qmax.comparison_value(); 00815 } 00816 virtual bool has_known_area() const { return true;} ///< the area is analytically known 00817 virtual double known_area() const { 00818 return twopi * 2 * (_qmax.comparison_value()-max(_qmin.comparison_value(),0.0)); // this should handle properly absrapmin<0 00819 } 00820 }; 00821 00822 // returns a selector for a minimum |rapidity| 00823 Selector SelectorAbsRapMin(double absrapmin) { 00824 return Selector(new SW_QuantityMin<QuantityAbsRap>(absrapmin)); 00825 } 00826 00827 // returns a selector for a maximum |rapidity| 00828 Selector SelectorAbsRapMax(double absrapmax) { 00829 return Selector(new SW_AbsRapMax(absrapmax)); 00830 } 00831 00832 // returns a selector for a |rapidity| range 00833 Selector SelectorAbsRapRange(double rapmin, double rapmax) { 00834 return Selector(new SW_AbsRapRange(rapmin, rapmax)); 00835 } 00836 00837 00838 //---------------------------------------------------------------------- 00839 /// helper for selecting on pseudo-rapidities 00840 class QuantityEta : public QuantityBase{ 00841 public: 00842 QuantityEta(double eta) : QuantityBase(eta){} 00843 virtual double operator()(const PseudoJet & jet ) const { return jet.eta();} 00844 virtual string description() const {return "eta";} 00845 // virtual bool is_geometric() const { return true;} // not strictly only y and phi-dependent 00846 }; 00847 00848 // returns a selector for a pseudo-minimum rapidity 00849 Selector SelectorEtaMin(double etamin) { 00850 return Selector(new SW_QuantityMin<QuantityEta>(etamin)); 00851 } 00852 00853 // returns a selector for a pseudo-maximum rapidity 00854 Selector SelectorEtaMax(double etamax) { 00855 return Selector(new SW_QuantityMax<QuantityEta>(etamax)); 00856 } 00857 00858 // returns a selector for a pseudo-rapidity range 00859 Selector SelectorEtaRange(double etamin, double etamax) { 00860 return Selector(new SW_QuantityRange<QuantityEta>(etamin, etamax)); 00861 } 00862 00863 00864 //---------------------------------------------------------------------- 00865 /// helper for selecting on |pseudo-rapidities| 00866 class QuantityAbsEta : public QuantityBase{ 00867 public: 00868 QuantityAbsEta(double abseta) : QuantityBase(abseta){} 00869 virtual double operator()(const PseudoJet & jet ) const { return abs(jet.eta());} 00870 virtual string description() const {return "|eta|";} 00871 virtual bool is_geometric() const { return true;} 00872 }; 00873 00874 // returns a selector for a minimum |pseudo-rapidity| 00875 Selector SelectorAbsEtaMin(double absetamin) { 00876 return Selector(new SW_QuantityMin<QuantityAbsEta>(absetamin)); 00877 } 00878 00879 // returns a selector for a maximum |pseudo-rapidity| 00880 Selector SelectorAbsEtaMax(double absetamax) { 00881 return Selector(new SW_QuantityMax<QuantityAbsEta>(absetamax)); 00882 } 00883 00884 // returns a selector for a |pseudo-rapidity| range 00885 Selector SelectorAbsEtaRange(double absetamin, double absetamax) { 00886 return Selector(new SW_QuantityRange<QuantityAbsEta>(absetamin, absetamax)); 00887 } 00888 00889 00890 //---------------------------------------------------------------------- 00891 /// helper for selecting on azimuthal angle 00892 /// 00893 /// Note that the bounds have to be specified as min<max 00894 /// phimin has to be > -2pi 00895 /// phimax has to be < 4pi 00896 class SW_PhiRange : public SelectorWorker { 00897 public: 00898 /// detfault ctor (initialises the pt cut) 00899 SW_PhiRange(double phimin, double phimax) : _phimin(phimin), _phimax(phimax){ 00900 assert(_phimin<_phimax); 00901 assert(_phimin>-twopi); 00902 assert(_phimax<2*twopi); 00903 00904 _phispan = _phimax - _phimin; 00905 } 00906 00907 /// returns true is the given object passes the selection pt cut 00908 virtual bool pass(const PseudoJet & jet) const { 00909 double dphi=jet.phi()-_phimin; 00910 if (dphi >= twopi) dphi -= twopi; 00911 if (dphi < 0) dphi += twopi; 00912 return (dphi <= _phispan); 00913 } 00914 00915 /// returns a description of the worker 00916 virtual string description() const { 00917 ostringstream ostr; 00918 ostr << _phimin << " <= phi <= " << _phimax; 00919 return ostr.str(); 00920 } 00921 00922 virtual bool is_geometric() const { return true;} 00923 00924 protected: 00925 double _phimin; // the lower cut 00926 double _phimax; // the upper cut 00927 double _phispan; // the span of the range 00928 }; 00929 00930 00931 // returns a selector for a phi range 00932 Selector SelectorPhiRange(double phimin, double phimax) { 00933 return Selector(new SW_PhiRange(phimin, phimax)); 00934 } 00935 00936 //---------------------------------------------------------------------- 00937 /// helper for selecting on both rapidity and azimuthal angle 00938 class SW_RapPhiRange : public SW_And{ 00939 public: 00940 SW_RapPhiRange(double rapmin, double rapmax, double phimin, double phimax) 00941 : SW_And(SelectorRapRange(rapmin, rapmax), SelectorPhiRange(phimin, phimax)){ 00942 _known_area = ((phimax-phimin > twopi) ? twopi : phimax-phimin) * (rapmax-rapmin); 00943 } 00944 00945 /// if it has a computable area, return it 00946 virtual double known_area() const{ 00947 return _known_area; 00948 } 00949 00950 protected: 00951 double _known_area; 00952 }; 00953 00954 Selector SelectorRapPhiRange(double rapmin, double rapmax, double phimin, double phimax) { 00955 return Selector(new SW_RapPhiRange(rapmin, rapmax, phimin, phimax)); 00956 } 00957 00958 00959 //---------------------------------------------------------------------- 00960 /// helper for selecting the n hardest jets 00961 class SW_NHardest : public SelectorWorker { 00962 public: 00963 /// ctor with specification of the number of objects to keep 00964 SW_NHardest(unsigned int n) : _n(n) {}; 00965 00966 /// pass makes no sense here normally the parent selector will throw 00967 /// an error but for internal use in the SW, we'll throw one from 00968 /// here by security 00969 virtual bool pass(const PseudoJet &) const { 00970 if (!applies_jet_by_jet()) 00971 throw Error("Cannot apply this selector worker to an individual jet"); 00972 return false; 00973 } 00974 00975 /// For each jet that does not pass the cuts, this routine sets the 00976 /// pointer to 0. 00977 virtual void terminator(vector<const PseudoJet *> & jets) const { 00978 // nothing to do if the size is too small 00979 if (jets.size() < _n) return; 00980 00981 // do we want to first chech if things are already ordered before 00982 // going through the ordering process? For now, no. Maybe carry 00983 // out timing tests at some point to establish the optimal 00984 // strategy. 00985 00986 vector<double> minus_pt2(jets.size()); 00987 vector<unsigned int> indices(jets.size()); 00988 00989 for (unsigned int i=0; i<jets.size(); i++){ 00990 indices[i] = i; 00991 00992 // we need to make sure that the object has not already been 00993 // nullified. Note that if we have less than _n jets, this 00994 // whole n-hardest selection will not have any effect. 00995 minus_pt2[i] = jets[i] ? -jets[i]->perp2() : 0.0; 00996 } 00997 00998 IndexedSortHelper sort_helper(& minus_pt2); 00999 01000 partial_sort(indices.begin(), indices.begin()+_n, indices.end(), sort_helper); 01001 01002 for (unsigned int i=_n; i<jets.size(); i++) 01003 jets[indices[i]] = NULL; 01004 } 01005 01006 /// returns true if this can be applied jet by jet 01007 virtual bool applies_jet_by_jet() const {return false;} 01008 01009 /// returns a description of the worker 01010 virtual string description() const { 01011 ostringstream ostr; 01012 ostr << _n << " hardest"; 01013 return ostr.str(); 01014 } 01015 01016 protected: 01017 unsigned int _n; 01018 }; 01019 01020 01021 // returns a selector for the n hardest jets 01022 Selector SelectorNHardest(unsigned int n) { 01023 return Selector(new SW_NHardest(n)); 01024 } 01025 01026 01027 01028 //---------------------------------------------------------------------- 01029 // selector and workers for geometric ranges 01030 //---------------------------------------------------------------------- 01031 01032 //---------------------------------------------------------------------- 01033 /// a generic class for objects that contain a position 01034 class SW_WithReference : public SelectorWorker{ 01035 public: 01036 /// ctor 01037 SW_WithReference() : _is_initialised(false){}; 01038 01039 /// returns true if the worker takes a reference jet 01040 virtual bool takes_reference() const { return true;} 01041 01042 /// sets the reference jet 01043 virtual void set_reference(const PseudoJet ¢re){ 01044 _is_initialised = true; 01045 _reference = centre; 01046 } 01047 01048 protected: 01049 PseudoJet _reference; 01050 bool _is_initialised; 01051 }; 01052 01053 //---------------------------------------------------------------------- 01054 /// helper for selecting on objects within a distance 'radius' of a reference 01055 class SW_Circle : public SW_WithReference { 01056 public: 01057 SW_Circle(const double &radius) : _radius2(radius*radius) {} 01058 01059 /// return a copy of the current object 01060 virtual SelectorWorker* copy(){ return new SW_Circle(*this);} 01061 01062 /// returns true if a given object passes the selection criterium 01063 /// this has to be overloaded by derived workers 01064 virtual bool pass(const PseudoJet & jet) const { 01065 // make sure the centre is initialised 01066 if (! _is_initialised) 01067 throw Error("To use a SelectorCircle (or any selector that requires a reference), you first have to call set_reference(...)"); 01068 01069 return jet.squared_distance(_reference) <= _radius2; 01070 } 01071 01072 /// returns a description of the worker 01073 virtual string description() const { 01074 ostringstream ostr; 01075 ostr << "distance from the centre <= " << sqrt(_radius2); 01076 return ostr.str(); 01077 } 01078 01079 /// returns the rapidity range for which it may return "true" 01080 virtual void get_rapidity_extent(double & rapmin, double & rapmax) const{ 01081 // make sure the centre is initialised 01082 if (! _is_initialised) 01083 throw Error("To use a SelectorCircle (or any selector that requires a reference), you first have to call set_reference(...)"); 01084 01085 rapmax = _reference.rap()+sqrt(_radius2); 01086 rapmin = _reference.rap()-sqrt(_radius2); 01087 } 01088 01089 virtual bool is_geometric() const { return true;} ///< implies a finite area 01090 virtual bool has_finite_area() const { return true;} ///< regardless of the reference 01091 virtual bool has_known_area() const { return true;} ///< the area is analytically known 01092 virtual double known_area() const { 01093 return pi * _radius2; 01094 } 01095 01096 protected: 01097 double _radius2; 01098 }; 01099 01100 01101 // select on objets within a distance 'radius' of a variable location 01102 Selector SelectorCircle(const double & radius) { 01103 return Selector(new SW_Circle(radius)); 01104 } 01105 01106 01107 //---------------------------------------------------------------------- 01108 /// helper for selecting on objects with a distance to a reference 01109 /// betwene 'radius_in' and 'radius_out' 01110 class SW_Doughnut : public SW_WithReference { 01111 public: 01112 SW_Doughnut(const double &radius_in, const double &radius_out) 01113 : _radius_in2(radius_in*radius_in), _radius_out2(radius_out*radius_out) {} 01114 01115 /// return a copy of the current object 01116 virtual SelectorWorker* copy(){ return new SW_Doughnut(*this);} 01117 01118 /// returns true if a given object passes the selection criterium 01119 /// this has to be overloaded by derived workers 01120 virtual bool pass(const PseudoJet & jet) const { 01121 // make sure the centre is initialised 01122 if (! _is_initialised) 01123 throw Error("To use a SelectorDoughnut (or any selector that requires a reference), you first have to call set_reference(...)"); 01124 01125 double distance2 = jet.squared_distance(_reference); 01126 01127 return (distance2 <= _radius_out2) && (distance2 >= _radius_in2); 01128 } 01129 01130 /// returns a description of the worker 01131 virtual string description() const { 01132 ostringstream ostr; 01133 ostr << sqrt(_radius_in2) << " <= distance from the centre <= " << sqrt(_radius_out2); 01134 return ostr.str(); 01135 } 01136 01137 /// returns the rapidity range for which it may return "true" 01138 virtual void get_rapidity_extent(double & rapmin, double & rapmax) const{ 01139 // make sure the centre is initialised 01140 if (! _is_initialised) 01141 throw Error("To use a SelectorDoughnut (or any selector that requires a reference), you first have to call set_reference(...)"); 01142 01143 rapmax = _reference.rap()+sqrt(_radius_out2); 01144 rapmin = _reference.rap()-sqrt(_radius_out2); 01145 } 01146 01147 virtual bool is_geometric() const { return true;} ///< implies a finite area 01148 virtual bool has_finite_area() const { return true;} ///< regardless of the reference 01149 virtual bool has_known_area() const { return true;} ///< the area is analytically known 01150 virtual double known_area() const { 01151 return pi * (_radius_out2-_radius_in2); 01152 } 01153 01154 protected: 01155 double _radius_in2, _radius_out2; 01156 }; 01157 01158 01159 01160 // select on objets with distance from the centre is between 'radius_in' and 'radius_out' 01161 Selector SelectorDoughnut(const double & radius_in, const double & radius_out) { 01162 return Selector(new SW_Doughnut(radius_in, radius_out)); 01163 } 01164 01165 01166 //---------------------------------------------------------------------- 01167 /// helper for selecting on objects with rapidity within a distance 'delta' of a reference 01168 class SW_Strip : public SW_WithReference { 01169 public: 01170 SW_Strip(const double &delta) : _delta(delta) {} 01171 01172 /// return a copy of the current object 01173 virtual SelectorWorker* copy(){ return new SW_Strip(*this);} 01174 01175 /// returns true if a given object passes the selection criterium 01176 /// this has to be overloaded by derived workers 01177 virtual bool pass(const PseudoJet & jet) const { 01178 // make sure the centre is initialised 01179 if (! _is_initialised) 01180 throw Error("To use a SelectorStrip (or any selector that requires a reference), you first have to call set_reference(...)"); 01181 01182 return abs(jet.rap()-_reference.rap()) <= _delta; 01183 } 01184 01185 /// returns a description of the worker 01186 virtual string description() const { 01187 ostringstream ostr; 01188 ostr << "|rap - rap_reference| <= " << _delta; 01189 return ostr.str(); 01190 } 01191 01192 /// returns the rapidity range for which it may return "true" 01193 virtual void get_rapidity_extent(double & rapmin, double & rapmax) const{ 01194 // make sure the centre is initialised 01195 if (! _is_initialised) 01196 throw Error("To use a SelectorStrip (or any selector that requires a reference), you first have to call set_reference(...)"); 01197 01198 rapmax = _reference.rap()+_delta; 01199 rapmin = _reference.rap()-_delta; 01200 } 01201 01202 virtual bool is_geometric() const { return true;} ///< implies a finite area 01203 virtual bool has_finite_area() const { return true;} ///< regardless of the reference 01204 virtual bool has_known_area() const { return true;} ///< the area is analytically known 01205 virtual double known_area() const { 01206 return twopi * 2 * _delta; 01207 } 01208 01209 protected: 01210 double _delta; 01211 }; 01212 01213 01214 // select on objets within a distance 'radius' of a variable location 01215 Selector SelectorStrip(const double & half_width) { 01216 return Selector(new SW_Strip(half_width)); 01217 } 01218 01219 01220 //---------------------------------------------------------------------- 01221 /// helper for selecting on objects with rapidity within a distance 01222 /// 'delta_rap' of a reference and phi within a distanve delta_phi of 01223 /// a reference 01224 class SW_Rectangle : public SW_WithReference { 01225 public: 01226 SW_Rectangle(const double &delta_rap, const double &delta_phi) 01227 : _delta_rap(delta_rap), _delta_phi(delta_phi) {} 01228 01229 /// return a copy of the current object 01230 virtual SelectorWorker* copy(){ return new SW_Rectangle(*this);} 01231 01232 /// returns true if a given object passes the selection criterium 01233 /// this has to be overloaded by derived workers 01234 virtual bool pass(const PseudoJet & jet) const { 01235 // make sure the centre is initialised 01236 if (! _is_initialised) 01237 throw Error("To use a SelectorRectangle (or any selector that requires a reference), you first have to call set_reference(...)"); 01238 01239 return (abs(jet.rap()-_reference.rap()) <= _delta_rap) && (abs(jet.delta_phi_to(_reference)) <= _delta_phi); 01240 } 01241 01242 /// returns a description of the worker 01243 virtual string description() const { 01244 ostringstream ostr; 01245 ostr << "|rap - rap_reference| <= " << _delta_rap << " && |phi - phi_reference| <= " << _delta_phi ; 01246 return ostr.str(); 01247 } 01248 01249 /// returns the rapidity range for which it may return "true" 01250 virtual void get_rapidity_extent(double & rapmin, double & rapmax) const{ 01251 // make sure the centre is initialised 01252 if (! _is_initialised) 01253 throw Error("To use a SelectorRectangle (or any selector that requires a reference), you first have to call set_reference(...)"); 01254 01255 rapmax = _reference.rap()+_delta_rap; 01256 rapmin = _reference.rap()-_delta_rap; 01257 } 01258 01259 virtual bool is_geometric() const { return true;} ///< implies a finite area 01260 virtual bool has_finite_area() const { return true;} ///< regardless of the reference 01261 virtual bool has_known_area() const { return true;} ///< the area is analytically known 01262 virtual double known_area() const { 01263 return 4 * _delta_rap * _delta_phi; 01264 } 01265 01266 protected: 01267 double _delta_rap, _delta_phi; 01268 }; 01269 01270 01271 // select on objets within a distance 'radius' of a variable location 01272 Selector SelectorRectangle(const double & half_rap_width, const double & half_phi_width) { 01273 return Selector(new SW_Rectangle(half_rap_width, half_phi_width)); 01274 } 01275 01276 01277 //---------------------------------------------------------------------- 01278 /// helper for selecting the jets that carry at least a given fraction 01279 /// of the reference jet 01280 class SW_PtFractionMin : public SW_WithReference { 01281 public: 01282 /// ctor with specification of the number of objects to keep 01283 SW_PtFractionMin(double fraction) : _fraction2(fraction*fraction){} 01284 01285 /// return a copy of the current object 01286 virtual SelectorWorker* copy(){ return new SW_PtFractionMin(*this);} 01287 01288 /// return true if the jet carries a large enough fraction of the reference. 01289 /// Throw an error if the reference is not initialised. 01290 virtual bool pass(const PseudoJet & jet) const { 01291 // make sure the centre is initialised 01292 if (! _is_initialised) 01293 throw Error("To use a SelectorPtFractionMin (or any selector that requires a reference), you first have to call set_reference(...)"); 01294 01295 // otherwise, just call that method on the jet 01296 return (jet.perp2() >= _fraction2*_reference.perp2()); 01297 } 01298 01299 /// returns a description of the worker 01300 virtual string description() const { 01301 ostringstream ostr; 01302 ostr << "pt >= " << sqrt(_fraction2) << "* pt_ref"; 01303 return ostr.str(); 01304 } 01305 01306 protected: 01307 double _fraction2; 01308 }; 01309 01310 01311 // select objects that carry at least a fraction "fraction" of the reference jet 01312 // (Note that this selectir takes a reference) 01313 Selector SelectorPtFractionMin(double fraction){ 01314 return Selector(new SW_PtFractionMin(fraction)); 01315 } 01316 01317 01318 //---------------------------------------------------------------------- 01319 // additional (mostly helper) selectors 01320 //---------------------------------------------------------------------- 01321 01322 //---------------------------------------------------------------------- 01323 /// helper for selecting the 0-momentum jets 01324 class SW_IsZero : public SelectorWorker { 01325 public: 01326 /// ctor 01327 SW_IsZero(){} 01328 01329 /// return true if the jet has zero momentum 01330 virtual bool pass(const PseudoJet & jet) const { 01331 return jet==0; 01332 } 01333 01334 /// rereturns a description of the worker 01335 virtual string description() const { return "zero";} 01336 }; 01337 01338 01339 // select objects with zero momentum 01340 Selector SelectorIsZero(){ 01341 return Selector(new SW_IsZero()); 01342 } 01343 01344 01345 //---------------------------------------------------------------------- 01346 #ifndef __FJCORE__ 01347 /// helper for selecting the pure ghost 01348 class SW_IsPureGhost : public SelectorWorker { 01349 public: 01350 /// ctor 01351 SW_IsPureGhost(){} 01352 01353 /// return true if the jet is a pure-ghost jet 01354 virtual bool pass(const PseudoJet & jet) const { 01355 // if the jet has no area support then it's certainly not a ghost 01356 if (!jet.has_area()) return false; 01357 01358 // otherwise, just call that method on the jet 01359 return jet.is_pure_ghost(); 01360 } 01361 01362 /// rereturns a description of the worker 01363 virtual string description() const { return "pure ghost";} 01364 }; 01365 01366 01367 // select objects that are (or are only made of) ghosts 01368 Selector SelectorIsPureGhost(){ 01369 return Selector(new SW_IsPureGhost()); 01370 } 01371 01372 //---------------------------------------------------------------------- 01373 // Selector and workers for obtaining a Selector from an old 01374 // RangeDefinition 01375 // 01376 // This is mostly intended for backward compatibility and is likely to 01377 // be removed in a future major release of FastJet 01378 //---------------------------------------------------------------------- 01379 01380 //---------------------------------------------------------------------- 01381 /// helper for selecting on both rapidity and azimuthal angle 01382 class SW_RangeDefinition : public SelectorWorker{ 01383 public: 01384 /// ctor from a RangeDefinition 01385 SW_RangeDefinition(const RangeDefinition &range) : _range(&range){} 01386 01387 /// transfer the selection creterium to the underlying RangeDefinition 01388 virtual bool pass(const PseudoJet & jet) const { 01389 return _range->is_in_range(jet); 01390 } 01391 01392 /// returns a description of the worker 01393 virtual string description() const { 01394 return _range->description(); 01395 } 01396 01397 /// returns the rapidity range for which it may return "true" 01398 virtual void get_rapidity_extent(double & rapmin, double & rapmax) const{ 01399 _range->get_rap_limits(rapmin, rapmax); 01400 } 01401 01402 /// check if it has a finite area 01403 virtual bool is_geometric() const { return true;} 01404 01405 /// check if it has an analytically computable area 01406 virtual bool has_known_area() const { return true;} 01407 01408 /// if it has a computable area, return it 01409 virtual double known_area() const{ 01410 return _range->area(); 01411 } 01412 01413 protected: 01414 const RangeDefinition *_range; 01415 }; 01416 01417 01418 // ctor from a RangeDefinition 01419 //---------------------------------------------------------------------- 01420 // 01421 // This is provided for backward compatibility and will be removed in 01422 // a future major release of FastJet 01423 Selector::Selector(const RangeDefinition &range) { 01424 _worker.reset(new SW_RangeDefinition(range)); 01425 } 01426 #endif // __FJCORE__ 01427 01428 01429 // operators applying directly on a Selector 01430 //---------------------------------------------------------------------- 01431 01432 // operator &= 01433 // For 2 Selectors a and b, a &= b is eauivalent to a = a & b; 01434 Selector & Selector::operator &=(const Selector & b){ 01435 _worker.reset(new SW_And(*this, b)); 01436 return *this; 01437 } 01438 01439 // operator &= 01440 // For 2 Selectors a and b, a &= b is eauivalent to a = a & b; 01441 Selector & Selector::operator |=(const Selector & b){ 01442 _worker.reset(new SW_Or(*this, b)); 01443 return *this; 01444 } 01445 01446 FASTJET_END_NAMESPACE // defined in fastjet/internal/base.hh