FastJet 3.0beta1
07-subtraction-old.cc
Go to the documentation of this file.
00001 //----------------------------------------------------------------------
00002 /// \file
00003 /// \page Example07old 07 - subtracting jet background contamination (old version)
00004 ///
00005 /// fastjet subtraction example program. 
00006 ///
00007 /// Note that this example is deprecated --- see 07-subtraction.cc
00008 /// for the newest version --- so it is not built by default
00009 ///
00010 /// run it with    : ./07-subtraction-old < data/Pythia-Zp2jets-lhc-pileup-1ev.dat
00011 ///
00012 /// Source code: 07-subtraction-old.cc
00013 //----------------------------------------------------------------------
00014 
00015 //STARTHEADER
00016 // $Id: 07-subtraction-old.cc 2409 2011-07-08 15:58:15Z soyez $
00017 //
00018 // Copyright (c) 2005-2011, Matteo Cacciari, Gavin Salam and Gregory Soyez
00019 //
00020 //----------------------------------------------------------------------
00021 // This file is part of FastJet.
00022 //
00023 //  FastJet is free software; you can redistribute it and/or modify
00024 //  it under the terms of the GNU General Public License as published by
00025 //  the Free Software Foundation; either version 2 of the License, or
00026 //  (at your option) any later version.
00027 //
00028 //  The algorithms that underlie FastJet have required considerable
00029 //  development and are described in hep-ph/0512210. If you use
00030 //  FastJet as part of work towards a scientific publication, please
00031 //  include a citation to the FastJet paper.
00032 //
00033 //  FastJet is distributed in the hope that it will be useful,
00034 //  but WITHOUT ANY WARRANTY; without even the implied warranty of
00035 //  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00036 //  GNU General Public License for more details.
00037 //
00038 //  You should have received a copy of the GNU General Public License
00039 //  along with FastJet; if not, write to the Free Software
00040 //  Foundation, Inc.:
00041 //      59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
00042 //----------------------------------------------------------------------
00043 //ENDHEADER
00044 
00045 #include "fastjet/PseudoJet.hh"
00046 #include "fastjet/ClusterSequenceArea.hh"
00047 #include <iostream> // needed for io
00048 
00049 using namespace std;
00050 
00051 int main (int argc, char ** argv) {
00052   
00053   // read in input particles
00054   //
00055   // since we use here simulated data we can split the hard event
00056   // from the full (i.e. with pileup added) one
00057   //----------------------------------------------------------
00058 
00059   vector<fastjet::PseudoJet> hard_event, full_event;
00060   
00061   // read in input particles. Keep the hard event generated by PYTHIA
00062   // separated from the full event, so as to be able to gauge the
00063   // "goodness" of the subtraction from the full event, which also
00064   // includes pileup
00065   double particle_maxrap = 5.0;
00066 
00067   string line;
00068   int  nsub  = 0; // counter to keep track of which sub-event we're reading
00069   while (getline(cin, line)) {
00070     istringstream linestream(line);
00071     // take substrings to avoid problems when there are extra "pollution"
00072     // characters (e.g. line-feed).
00073     if (line.substr(0,4) == "#END") {break;}
00074     if (line.substr(0,9) == "#SUBSTART") {
00075       // if more sub events follow, make copy of first one (the hard one) here
00076       if (nsub == 1) hard_event = full_event;
00077       nsub += 1;
00078     }
00079     if (line.substr(0,1) == "#") {continue;}
00080     double px,py,pz,E;
00081     linestream >> px >> py >> pz >> E;
00082     // you can construct 
00083     fastjet::PseudoJet particle(px,py,pz,E);
00084 
00085     // push event onto back of full_event vector
00086     if (abs(particle.rap()) <= particle_maxrap) full_event.push_back(particle);
00087   }
00088 
00089   // if we have read in only one event, copy it across here...
00090   if (nsub == 1) hard_event = full_event;
00091 
00092   // if there was nothing in the event 
00093   if (nsub == 0) {
00094     cerr << "Error: read empty event\n";
00095     exit(-1);
00096   }
00097   
00098   
00099   // create a jet definition for the clustering
00100   // We use the anti-kt algorithm with a radius of 0.5
00101   //----------------------------------------------------------
00102   double R = 0.5;
00103   fastjet::JetDefinition jet_def(fastjet::antikt_algorithm, R);
00104 
00105   // create an area definition for the clustering
00106   //----------------------------------------------------------
00107   // ghosts should go up to the acceptance of the detector or
00108   // (with infinite acceptance) at least 2R beyond the region
00109   // where you plan to investigate jets.
00110   double ghost_maxrap = 6.0;
00111   fastjet::GhostedAreaSpec area_spec(ghost_maxrap);
00112   fastjet::AreaDefinition area_def(fastjet::active_area, area_spec);
00113 
00114   // run the jet clustering with the above jet and area definitions
00115   // for both the hard and full event
00116   //
00117   // We retrieve the jets above 7 GeV in both case (note that the
00118   // 7-GeV cut we be applied again later on after we subtract the jets
00119   // from the full event)
00120   // ----------------------------------------------------------
00121   fastjet::ClusterSequenceArea clust_seq_hard(hard_event, jet_def, area_def);
00122   fastjet::ClusterSequenceArea clust_seq_full(full_event, jet_def, area_def);
00123 
00124   double ptmin = 7.0;
00125   vector<fastjet::PseudoJet> hard_jets = sorted_by_pt(clust_seq_hard.inclusive_jets(ptmin));
00126   vector<fastjet::PseudoJet> full_jets = sorted_by_pt(clust_seq_full.inclusive_jets(ptmin));
00127 
00128   // Now turn to the estimation of the background (for the full event)
00129   //
00130   // This also requires a ClusterSequenceArea.
00131   // In general, this ClusterSequenceArea does not need to be the same
00132   // as the one used (above) to cluster and extract the jets from the
00133   // event:
00134   //  - We strongly recommend using the kt or Cambridge/Aachen algorithm
00135   //    (a warning will be issued otherwise)
00136   //  - The choice of the radius is a bit more subtle. R=0.4 has been
00137   //    chosen to limit the impact of hard jets; in samples of
00138   //    dominantly sparse events it may cause the UE/pileup to be
00139   //    underestimated a little, a slightly larger value (0.5 or 0.6)
00140   //    may be better.
00141   //  - For the area definition, we recommend the use of explicit
00142   //    ghosts (i.e. active_area_explicit_ghosts)
00143   //    As mentionned in the area example (06-area.cc), ghosts should
00144   //    extend sufficiently far in rapidity to cover the jets used in
00145   //    the computation of the background (see also the comment below)
00146   //
00147   // ----------------------------------------------------------
00148   fastjet::JetDefinition jet_def_bkgd(fastjet::kt_algorithm, 0.4);
00149   fastjet::GhostedAreaSpec area_spec_bkgd(ghost_maxrap);
00150   fastjet::AreaDefinition area_def_bkgd(fastjet::active_area_explicit_ghosts, area_spec_bkgd);
00151   fastjet::ClusterSequenceArea clust_seq_bkgd(full_event, jet_def_bkgd, area_def_bkgd);
00152 
00153   // Once you have the ClusterSequenceArea, you can compute the
00154   // background. This is estimated over a given range
00155   // (RangeDefinition) i.e. only jets within that range will be used
00156   // to estimate the background. You shold thus make sure the ghosts
00157   // extend far enough in rapidity to cover the range, a warning will
00158   // be issued otherwise.
00159   //
00160   // The simplest way to define a RangeDefinition is through its
00161   // maximal |y| extent but other options are possible e.g. through a
00162   // minimal and maximal rapidity and minimal and maximal azimuthal
00163   // angle. If needed, you can even define your own ranges (a few are
00164   // provided with FastJet)
00165   //
00166   // Finally, the estimation of the background properties rho (the
00167   // average density per unit area) and sigma (the average
00168   // fluctuations per unit area) is done using
00169   // ClusterSequenceArea::get_median_rho_and_sigma(). This takes
00170   // 2 main parameters: the range discussed above and a boolean
00171   // controlling the use of 4-vector or scalar areas (we suggest using
00172   // 4-vector areas)
00173   //
00174   // ----------------------------------------------------------
00175   double range_maxrap = 4.5;  // we have a ghost_maxrap of 6.0, particles up to 5
00176   fastjet::RangeDefinition range(range_maxrap);
00177 
00178   bool use_4vector_area = true;
00179   
00180   double rho, sigma;
00181   clust_seq_bkgd.get_median_rho_and_sigma(range, use_4vector_area, rho, sigma);
00182 
00183   // show a summary of what was done so far
00184   //  - the description of the algorithms, areas and ranges used
00185   //  - the background properties
00186   //  - the jets in the hard event
00187   //----------------------------------------------------------
00188   cout << "Main clustering:" << endl;
00189   cout << "  Ran:   " << jet_def.description() << endl;
00190   cout << "  Area:  " << area_def.description() << endl;
00191   cout << "  Particles up to |y|=" << particle_maxrap << endl;
00192   cout << endl;
00193 
00194   cout << "Background estimation:" << endl;
00195   cout << "  Ran    " << jet_def_bkgd.description() << endl;
00196   cout << "  Area:  " << area_def_bkgd.description() << endl;
00197   cout << "  Range: " << range.description() << endl;
00198   cout << "  Giving, for the full event" << endl;
00199   cout << "    rho   = " << rho   << endl;
00200   cout << "    sigma = " << sigma << endl;
00201   cout << endl;
00202 
00203   cout << "Jets above " << ptmin << " GeV in the hard event (" << hard_event.size() << " particles)" << endl;
00204   cout << "---------------------------------------\n";
00205   printf("%5s %15s %15s %15s %15s\n","jet #", "rapidity", "phi", "pt", "area");
00206    for (unsigned int i = 0; i < hard_jets.size(); i++) {
00207     printf("%5u %15.8f %15.8f %15.8f %15.8f\n", i,
00208            hard_jets[i].rap(), hard_jets[i].phi(), hard_jets[i].perp(),
00209            hard_jets[i].area());
00210   }
00211   cout << endl;
00212 
00213   // Once the background properties have been computed, subtraction
00214   // can be applied on the jets
00215   //
00216   // This uses ClusterSequenceArea::subtracted_jet(jet, rho), with the
00217   // ClusterSequence used to cluster the jet and the background
00218   // density we have just computed
00219   // 
00220   // (Note that when using scalar areas, subtracted_pt should be used
00221   // instead of subtracted_jet)
00222   // 
00223   // We output the jets before and after subtraction
00224   // ----------------------------------------------------------
00225   cout << "Jets above " << ptmin << " GeV in the full event (" << full_event.size() << " particles)" << endl;
00226   cout << "---------------------------------------\n";
00227   printf("%5s %15s %15s %15s %15s %15s %15s %15s\n","jet #", "rapidity", "phi", "pt", "area", "rap_sub", "phi_sub", "pt_sub");
00228   unsigned int idx=0;
00229   for (unsigned int i=0; i<full_jets.size(); i++){
00230     // get the subtracted jet
00231     fastjet::PseudoJet subtracted_jet = clust_seq_full.subtracted_jet(full_jets[i], rho);
00232 
00233     // re-apply the pt cut
00234     if (subtracted_jet.perp2() >= ptmin*ptmin){
00235       printf("%5u %15.8f %15.8f %15.8f %15.8f %15.8f %15.8f %15.8f\n", idx,
00236              full_jets[i].rap(), full_jets[i].phi(), full_jets[i].perp(),
00237              full_jets[i].area(),
00238              subtracted_jet.rap(), subtracted_jet.phi(), 
00239              subtracted_jet.perp());
00240       idx++;
00241     }
00242   }
00243 
00244   return 0;
00245 }
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends