FastJet 3.0beta1
ClusterSequenceAreaBase.hh
00001 //STARTHEADER
00002 // $Id: ClusterSequenceAreaBase.hh 2304 2011-06-29 06:36:26Z soyez $
00003 //
00004 // Copyright (c) 2005-2006, Matteo Cacciari and Gavin Salam
00005 //
00006 //----------------------------------------------------------------------
00007 // This file is part of FastJet.
00008 //
00009 //  FastJet is free software; you can redistribute it and/or modify
00010 //  it under the terms of the GNU General Public License as published by
00011 //  the Free Software Foundation; either version 2 of the License, or
00012 //  (at your option) any later version.
00013 //
00014 //  The algorithms that underlie FastJet have required considerable
00015 //  development and are described in hep-ph/0512210. If you use
00016 //  FastJet as part of work towards a scientific publication, please
00017 //  include a citation to the FastJet paper.
00018 //
00019 //  FastJet is distributed in the hope that it will be useful,
00020 //  but WITHOUT ANY WARRANTY; without even the implied warranty of
00021 //  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00022 //  GNU General Public License for more details.
00023 //
00024 //  You should have received a copy of the GNU General Public License
00025 //  along with FastJet; if not, write to the Free Software
00026 //  Foundation, Inc.:
00027 //      59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
00028 //----------------------------------------------------------------------
00029 //ENDHEADER
00030 
00031 #ifndef __FASTJET_CLUSTERSEQUENCEAREABASE_HH__
00032 #define __FASTJET_CLUSTERSEQUENCEAREABASE_HH__
00033 
00034 #include "fastjet/ClusterSequence.hh"
00035 #include "fastjet/internal/LimitedWarning.hh"
00036 #include "fastjet/Selector.hh"
00037 
00038 FASTJET_BEGIN_NAMESPACE
00039 
00040 /// @ingroup area_classes
00041 /// \class ClusterSequenceAreaBase
00042 /// base class that sets interface for extensions of ClusterSequence
00043 /// that provide information about the area of each jet
00044 ///
00045 /// the virtual functions here all return 0, since no area determination
00046 /// is implemented.
00047 class ClusterSequenceAreaBase : public ClusterSequence {
00048 public:
00049   
00050   /// a constructor which just carries out the construction of the
00051   /// parent class
00052   template<class L> ClusterSequenceAreaBase
00053          (const std::vector<L> & pseudojets, 
00054           const JetDefinition & jet_def,
00055           const bool & writeout_combinations = false) :
00056            ClusterSequence(pseudojets, jet_def, writeout_combinations) {}
00057 
00058 
00059   /// default constructor
00060   ClusterSequenceAreaBase() {}
00061 
00062 
00063   /// destructor
00064   virtual ~ClusterSequenceAreaBase() {}
00065 
00066 
00067   /// return the area associated with the given jet; this base class
00068   /// returns 0.
00069   virtual double area       (const PseudoJet & ) const {return 0.0;}
00070 
00071   /// return the error (uncertainty) associated with the determination
00072   /// of the area of this jet; this base class returns 0.
00073   virtual double area_error (const PseudoJet & ) const {return 0.0;}
00074 
00075   /// return a PseudoJet whose 4-vector is defined by the following integral
00076   ///
00077   ///       \int drap d\phi PseudoJet("rap,phi,pt=one") *
00078   ///                           * Theta("rap,phi inside jet boundary")
00079   ///
00080   /// where PseudoJet("rap,phi,pt=one") is a 4-vector with the given
00081   /// rapidity (rap), azimuth (phi) and pt=1, while Theta("rap,phi
00082   /// inside jet boundary") is a function that is 1 when rap,phi
00083   /// define a direction inside the jet boundary and 0 otherwise.
00084   ///
00085   /// This base class returns a null 4-vector.
00086   virtual PseudoJet area_4vector(const PseudoJet & ) const {
00087     return PseudoJet(0.0,0.0,0.0,0.0);}
00088 
00089   /// true if a jet is made exclusively of ghosts
00090   ///
00091   /// NB: most area classes do not give any explicit ghost jets, but
00092   /// some do, and they should replace this function with their own
00093   /// version.
00094   virtual bool is_pure_ghost(const PseudoJet & ) const {
00095     return false;
00096   }
00097 
00098   /// returns true if ghosts are explicitly included within 
00099   /// jets for this ClusterSequence; 
00100   ///
00101   /// Derived classes that do include explicit ghosts should provide
00102   /// an alternative version of this routine and set it properly.
00103   virtual bool has_explicit_ghosts() const {
00104     return false;
00105   }
00106 
00107   /// return the total area, corresponding to the given Selector, that
00108   /// is free of jets, in general based on the inclusive jets.
00109   /// 
00110   /// The selector passed as an argument has to have a finite area and
00111   /// apply jet-by-jet (see the BackgroundEstimator and Subtractor
00112   /// tools for more generic usages)
00113   virtual double empty_area(const Selector & selector) const;
00114 
00115   /// return the total area, corresponding to the given Selector, that
00116   /// is free of jets, based on the supplied all_jets
00117   /// 
00118   /// The selector passed as an argument has to have a finite area and
00119   /// apply jet-by-jet (see the BackgroundEstimator and Subtractor
00120   /// tools for more generic usages)
00121   double empty_area_from_jets(const std::vector<PseudoJet> & all_jets,
00122                               const Selector & selector) const;
00123 
00124   /// return something similar to the number of pure ghost jets
00125   /// in the given selector's range in an active area case.
00126   /// For the local implementation we return empty_area/(0.55 pi R^2),
00127   /// based on measured properties of ghost jets with kt and cam
00128   /// (cf arXiv:0802.1188).
00129   ///
00130   /// Note that the number returned is a double.
00131   /// 
00132   /// The selector passed as an argument has to have a finite area and
00133   /// apply jet-by-jet (see the BackgroundEstimator and Subtractor
00134   /// tools for more generic usages)
00135   virtual double n_empty_jets(const Selector & selector) const {
00136     double R = jet_def().R();
00137     return empty_area(selector)/(0.55*pi*R*R);
00138   }
00139 
00140   /// the median of (pt/area) for jets contained within the selector
00141   /// range, making use also of the info on n_empty_jets
00142   /// 
00143   /// The selector passed as an argument has to have a finite area and
00144   /// apply jet-by-jet (see the BackgroundEstimator and Subtractor
00145   /// tools for more generic usages)
00146   double median_pt_per_unit_area(const Selector & selector) const;
00147 
00148   /// the median of (pt/area_4vector) for jets contained within the
00149   /// selector range, making use also of the info on n_empty_jets
00150   /// 
00151   /// The selector passed as an argument has to have a finite area and
00152   /// apply jet-by-jet
00153   double median_pt_per_unit_area_4vector(const Selector & selector) const;
00154   
00155   /// the function that does the work for median_pt_per_unit_area and 
00156   /// median_pt_per_unit_area_4vector: 
00157   /// - something_is_area_4vect = false -> use plain area
00158   /// - something_is_area_4vect = true  -> use 4-vector area
00159   double median_pt_per_unit_something(
00160                     const Selector & selector, bool use_area_4vector) const;
00161 
00162   /// using jets withing the selector range (and with 4-vector areas if
00163   /// use_area_4vector), calculate the median pt/area, as well as an
00164   /// "error" (uncertainty), which is defined as the 1-sigma
00165   /// half-width of the distribution of pt/A, obtained by looking for
00166   /// the point below which we have (1-0.6827)/2 of the jets
00167   /// (including empty jets).
00168   ///
00169   /// The subtraction for a jet with uncorrected pt pt^U and area A is
00170   ///
00171   ///   pt^S = pt^U - median*A +- sigma*sqrt(A)
00172   ///
00173   /// where the error is only that associated with the fluctuations
00174   /// in the noise and not that associated with the noise having 
00175   /// caused changes in the hard-particle content of the jet.
00176   /// 
00177   /// The selector passed as an argument has to have a finite area and
00178   /// apply jet-by-jet (see the BackgroundEstimator and Subtractor
00179   /// tools for more generic usages)
00180   ///
00181   /// NB: subtraction may also be done with 4-vector area of course,
00182   /// and this is recommended for jets with larger values of R, as
00183   /// long as rho has also been determined with a 4-vector area;
00184   /// using a scalar area causes one to neglect terms of relative
00185   /// order $R^2/8$ in the jet $p_t$.
00186   virtual void get_median_rho_and_sigma(const Selector & selector, 
00187                                         bool use_area_4vector,
00188                                         double & median, double & sigma,
00189                                         double & mean_area) const;
00190 
00191   /// a more advanced version of get_median_rho_and_sigma, which allows
00192   /// one to use any "view" of the event containing all jets (so that, 
00193   /// e.g. one might use Cam on a different resolution scale without
00194   /// have to rerun the algorithm).
00195   ///
00196   /// By default it will assume that "all" are not inclusive jets, 
00197   /// so that in dealing with empty area it has to calculate
00198   /// the number of empty jets based on the empty area and the
00199   /// the observed <area> of jets rather than a surmised area
00200   ///
00201   /// Note that for small effective radii, this can cause problems
00202   /// because the harder jets get an area >> <ghost-jet-area>
00203   /// and so the estimate comes out all wrong. In these situations
00204   /// it is highly advisable to use an area with explicit ghosts, since
00205   /// then the "empty" jets are actually visible.
00206   /// 
00207   /// The selector passed as an argument has to have a finite area and
00208   /// apply jet-by-jet (see the BackgroundEstimator and Subtractor
00209   /// tools for more generic usages)
00210   virtual void get_median_rho_and_sigma(const std::vector<PseudoJet> & all_jets,
00211                                         const Selector & selector, 
00212                                         bool use_area_4vector,
00213                                         double & median, double & sigma,
00214                                         double & mean_area,
00215                                         bool all_are_inclusive = false) const;
00216 
00217   /// same as the full version of get_median_rho_and_error, but without
00218   /// access to the mean_area
00219   /// 
00220   /// The selector passed as an argument has to have a finite area and
00221   /// apply jet-by-jet (see the BackgroundEstimator and Subtractor
00222   /// tools for more generic usages)
00223   virtual void get_median_rho_and_sigma(const Selector & selector, 
00224                                 bool use_area_4vector,
00225                                 double & median, double & sigma) const {
00226     double mean_area;
00227     get_median_rho_and_sigma(selector,  use_area_4vector,
00228                              median,  sigma, mean_area);
00229   }
00230   
00231 
00232   /// fits a form pt_per_unit_area(y) = a + b*y^2 in the selector range. 
00233   /// exclude_above allows one to exclude large values of pt/area from fit. 
00234   ///               (if negative, the cut is discarded)
00235   /// use_area_4vector = true uses the 4vector areas.
00236   /// 
00237   /// The selector passed as an argument has to have a finite area and
00238   /// apply jet-by-jet (see the BackgroundEstimator and Subtractor
00239   /// tools for more generic usages)
00240   virtual void parabolic_pt_per_unit_area(double & a, double & b, 
00241                                           const Selector & selector, 
00242                                           double exclude_above=-1.0, 
00243                                           bool use_area_4vector=false) const;
00244 
00245   /// return a vector of all subtracted jets, using area_4vector, given rho.
00246   /// Only inclusive_jets above ptmin are subtracted and returned.
00247   /// the ordering is the same as that of sorted_by_pt(cs.inclusive_jets()),
00248   /// i.e. not necessarily ordered in pt once subtracted
00249   std::vector<PseudoJet> subtracted_jets(const double rho,
00250                                          const double ptmin=0.0) const;
00251 
00252   /// return a vector of subtracted jets, using area_4vector.
00253   /// Only inclusive_jets above ptmin are subtracted and returned.
00254   /// the ordering is the same as that of sorted_by_pt(cs.inclusive_jets()),
00255   /// i.e. not necessarily ordered in pt once subtracted
00256   /// 
00257   /// The selector passed as an argument has to have a finite area and
00258   /// apply jet-by-jet (see the BackgroundEstimator and Subtractor
00259   /// tools for more generic usages)
00260   std::vector<PseudoJet> subtracted_jets(const Selector & selector, 
00261                                          const double ptmin=0.0) const;
00262 
00263   /// return a subtracted jet, using area_4vector, given rho
00264   PseudoJet subtracted_jet(const PseudoJet & jet,
00265                            const double rho) const;
00266 
00267   /// return a subtracted jet, using area_4vector; note
00268   /// that this is potentially inefficient if repeatedly used for many
00269   /// different jets, because rho will be recalculated each time
00270   /// around.
00271   /// 
00272   /// The selector passed as an argument has to have a finite area and
00273   /// apply jet-by-jet (see the BackgroundEstimator and Subtractor
00274   /// tools for more generic usages)
00275   PseudoJet subtracted_jet(const PseudoJet & jet,
00276                            const Selector & selector) const;
00277 
00278   /// return the subtracted pt, given rho
00279   double subtracted_pt(const PseudoJet & jet,
00280                        const double rho,
00281                        bool use_area_4vector=false) const;
00282 
00283   /// return the subtracted pt; note that this is
00284   /// potentially inefficient if repeatedly used for many different
00285   /// jets, because rho will be recalculated each time around.
00286   /// 
00287   /// The selector passed as an argument has to have a finite area and
00288   /// apply jet-by-jet (see the BackgroundEstimator and Subtractor
00289   /// tools for more generic usages)
00290   double subtracted_pt(const PseudoJet & jet,
00291                        const Selector & selector,
00292                        bool use_area_4vector=false) const;
00293 
00294 protected:
00295   /// check the selector is suited for the computations i.e. applies jet by jet and has a finite area
00296   void _check_selector_good_for_median(const Selector &selector) const;
00297 
00298 
00299 private:
00300   /// handle warning messages
00301   static LimitedWarning _warnings;
00302   static LimitedWarning _warnings_zero_area;
00303   static LimitedWarning _warnings_empty_area;
00304 
00305   /// check the jet algorithm is suitable (and if not issue a warning)
00306   void _check_jet_alg_good_for_median() const;
00307   
00308 };
00309 
00310 
00311 
00312 FASTJET_END_NAMESPACE
00313 
00314 #endif // __FASTJET_CLUSTERSEQUENCEAREABASE_HH__
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends