FastJet 3.0beta1
|
00001 //STARTHEADER 00002 // $Id: Dnn3piCylinder.hh 1761 2010-09-16 10:43:18Z soyez $ 00003 // 00004 // Copyright (c) 2005-2006, Matteo Cacciari and Gavin Salam 00005 // 00006 //---------------------------------------------------------------------- 00007 // This file is part of FastJet. 00008 // 00009 // FastJet is free software; you can redistribute it and/or modify 00010 // it under the terms of the GNU General Public License as published by 00011 // the Free Software Foundation; either version 2 of the License, or 00012 // (at your option) any later version. 00013 // 00014 // The algorithms that underlie FastJet have required considerable 00015 // development and are described in hep-ph/0512210. If you use 00016 // FastJet as part of work towards a scientific publication, please 00017 // include a citation to the FastJet paper. 00018 // 00019 // FastJet is distributed in the hope that it will be useful, 00020 // but WITHOUT ANY WARRANTY; without even the implied warranty of 00021 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00022 // GNU General Public License for more details. 00023 // 00024 // You should have received a copy of the GNU General Public License 00025 // along with FastJet; if not, write to the Free Software 00026 // Foundation, Inc.: 00027 // 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 00028 //---------------------------------------------------------------------- 00029 //ENDHEADER 00030 00031 00032 #ifndef DROP_CGAL // in case we do not have the code for CGAL 00033 #ifndef __FASTJET_DNN3PICYLINDER_HH__ 00034 #define __FASTJET_DNN3PICYLINDER_HH__ 00035 00036 #include "fastjet/internal/DynamicNearestNeighbours.hh" 00037 #include "fastjet/internal/DnnPlane.hh" 00038 #include "fastjet/internal/numconsts.hh" 00039 00040 FASTJET_BEGIN_NAMESPACE // defined in fastjet/internal/base.hh 00041 00042 /// \if internal_doc 00043 /// @ingroup internal 00044 /// \class Dnn3piCylinder 00045 /// class derived from DynamicNearestNeighbours that provides an 00046 /// implementation for the surface of cylinder (using one 00047 /// DnnPlane object spanning 0--3pi). 00048 /// \endif 00049 class Dnn3piCylinder : public DynamicNearestNeighbours { 00050 public: 00051 /// empty initaliser 00052 Dnn3piCylinder() {} 00053 00054 /// Initialiser from a set of points on an Eta-Phi plane, where 00055 /// eta can have an arbitrary ranges and phi must be in range 00056 /// 0 <= phi < 2pi; 00057 /// 00058 /// NB: this class is more efficient than the plain Dnn4piCylinder 00059 /// class, but can give wrong answers when the nearest neighbour is 00060 /// further away than 2pi (in this case a point's nearest neighbour 00061 /// becomes itself, because it is considered to be a distance 2pi 00062 /// away). For the kt-algorithm (e.g.) this is actually not a 00063 /// problem (the distance need only be accurate when it is less than 00064 /// R), so we can tell the routine to ignore this problem -- 00065 /// alternatively the routine will crash if it detects it occurring 00066 /// (only when finding the nearest neighbour index, not its 00067 /// distance). 00068 Dnn3piCylinder(const std::vector<EtaPhi> &, 00069 const bool & ignore_nearest_is_mirror = false, 00070 const bool & verbose = false ); 00071 00072 /// Returns the index of the nearest neighbour of point labelled 00073 /// by ii (assumes ii is valid) 00074 int NearestNeighbourIndex(const int & ii) const ; 00075 00076 /// Returns the distance to the nearest neighbour of point labelled 00077 /// by index ii (assumes ii is valid) 00078 double NearestNeighbourDistance(const int & ii) const ; 00079 00080 /// Returns true iff the given index corresponds to a point that 00081 /// exists in the DNN structure (meaning that it has been added, and 00082 /// not removed in the meantime) 00083 bool Valid(const int & index) const; 00084 00085 void RemoveAndAddPoints(const std::vector<int> & indices_to_remove, 00086 const std::vector<EtaPhi> & points_to_add, 00087 std::vector<int> & indices_added, 00088 std::vector<int> & indices_of_updated_neighbours); 00089 00090 ~Dnn3piCylinder(); 00091 00092 private: 00093 00094 // our extras to help us navigate, find distance, etc. 00095 const static int INEXISTENT_VERTEX=-3; 00096 00097 bool _verbose; 00098 00099 bool _ignore_nearest_is_mirror; 00100 00101 /// Picture of how things will work... Copy 0--pi part of the 0--2pi 00102 /// cylinder into a region 2pi--3pi of a Euclidean plane. Below we 00103 /// show points labelled by + that have a mirror image in this 00104 /// manner, while points labelled by * do not have a mirror image. 00105 /// 00106 /// | . | 00107 /// | . | 00108 /// | . | 00109 /// | . | 00110 /// | 2 . | 00111 /// | * . | 00112 /// | + . + | 00113 /// | 0 . 1 | 00114 /// | . | 00115 /// 0 2pi 3pi 00116 /// 00117 /// Each "true" point has its true "cylinder" index (the index that 00118 /// is known externally to this class) as well as euclidean plane 00119 /// indices (main_index and mirror index in the MirrorVertexInfo 00120 /// structure), which are private concepts of this class. 00121 /// 00122 /// In above picture our structures would hold the following info 00123 /// (the picture shows the euclidean-plane numbering) 00124 /// 00125 /// _mirror_info[cylinder_index = 0] = (0, 1) 00126 /// _mirror_info[cylinder_index = 1] = (2, INEXISTENT_VERTEX) 00127 /// 00128 /// We also need to be able to go from the euclidean plane indices 00129 /// back to the "true" cylinder index, and for this purpose we use 00130 /// the vector _cylinder_index_of_plane_vertex[...], which in the above example has 00131 /// the following contents 00132 /// 00133 /// _cylinder_index_of_plane_vertex[0] = 0 00134 /// _cylinder_index_of_plane_vertex[1] = 0 00135 /// _cylinder_index_of_plane_vertex[2] = 1 00136 /// 00137 00138 /// 00139 struct MirrorVertexInfo { 00140 /// index of the given point (appearing in the range 0--2pi) in the 00141 /// 0--3pi euclidean plane structure (position will coincide with 00142 /// that on the 0--2pi cylinder, but index labelling it will be 00143 /// different) 00144 int main_index; 00145 /// index of the mirror point (appearing in the range 2pi--3pi) in the 00146 /// 0--3pi euclidean plane structure 00147 int mirror_index; 00148 }; 00149 00150 // for each "true" vertex we have reference to indices in the euclidean 00151 // plane structure 00152 std::vector<MirrorVertexInfo> _mirror_info; 00153 // for each index in the euclidean 0--3pi plane structure we want to 00154 // be able to get back to the "true" vertex index on the overall 00155 // 0--2pi cylinder structure 00156 std::vector<int> _cylinder_index_of_plane_vertex; 00157 00158 // NB: we define POINTERS here because the initialisation gave 00159 // us problems (things crashed!), perhaps because in practice 00160 // we were making a copy without being careful and defining 00161 // a proper copy constructor. 00162 DnnPlane * _DNN; 00163 00164 /// given a phi value in the 0--2pi range return one 00165 /// in the pi--3pi range. 00166 inline EtaPhi _remap_phi(const EtaPhi & point) { 00167 double phi = point.second; 00168 if (phi < pi) { phi += twopi ;} 00169 return EtaPhi(point.first, phi);} 00170 00171 00172 //---------------------------------------------------------------------- 00173 /// What on earth does this do? 00174 /// 00175 /// Example: last true "cylinder" index was 15 00176 /// last plane index was 23 00177 /// 00178 /// Then: _cylinder_index_of_plane_vertex.size() = 24 and 00179 /// _mirror_info.size() = 16 00180 /// 00181 /// IF cylinder_point's phi < pi then 00182 /// create: _mirror_info[16] = (main_index = 24, mirror_index=25) 00183 /// _cylinder_index_of_plane_vertex[24] = 16 00184 /// _cylinder_index_of_plane_vertex[25] = 16 00185 /// ELSE 00186 /// create: _mirror_info[16] = (main_index = 24, mirror_index=INEXISTENT..) 00187 /// _cylinder_index_of_plane_vertex[24] = 16 00188 /// 00189 /// ADDITIONALLY push the cylinder_point (and if it exists the mirror 00190 /// copy) onto the vector plane_points. 00191 void _RegisterCylinderPoint (const EtaPhi & cylinder_point, 00192 std::vector<EtaPhi> & plane_points); 00193 }; 00194 00195 00196 // here follow some inline implementations of the simpler of the 00197 // functions defined above 00198 00199 //---------------------------------------------------------------------- 00200 /// Note: one of the difficulties of the 0--3pi mapping is that 00201 /// a point may have its mirror copy as its own nearest neighbour 00202 /// (if no other point is within a distance of 2pi). This does 00203 /// not matter for the kt_algorithm with 00204 /// reasonable values of radius, but might matter for a general use 00205 /// of this algorithm -- depending on whether or not the user has 00206 /// initialised the class with instructions to ignore this problem the 00207 /// program will detect and ignore it, or crash. 00208 inline int Dnn3piCylinder::NearestNeighbourIndex(const int & current) const { 00209 int main_index = _mirror_info[current].main_index; 00210 int mirror_index = _mirror_info[current].mirror_index; 00211 int plane_index; 00212 if (mirror_index == INEXISTENT_VERTEX ) { 00213 plane_index = _DNN->NearestNeighbourIndex(main_index); 00214 } else { 00215 plane_index = ( 00216 _DNN->NearestNeighbourDistance(main_index) < 00217 _DNN->NearestNeighbourDistance(mirror_index)) ? 00218 _DNN->NearestNeighbourIndex(main_index) : 00219 _DNN->NearestNeighbourIndex(mirror_index) ; 00220 } 00221 int this_cylinder_index = _cylinder_index_of_plane_vertex[plane_index]; 00222 // either the user has acknowledged the fact that they may get the 00223 // mirror copy as the closest point, or crash if it should occur 00224 // that mirror copy is the closest point. 00225 assert(_ignore_nearest_is_mirror || this_cylinder_index != current); 00226 //if (this_cylinder_index == current) { 00227 // std::cerr << "WARNING point "<<current<< 00228 // " has its mirror copy as its own nearest neighbour"<<endl; 00229 //} 00230 return this_cylinder_index; 00231 } 00232 00233 inline double Dnn3piCylinder::NearestNeighbourDistance(const int & current) const { 00234 int main_index = _mirror_info[current].main_index; 00235 int mirror_index = _mirror_info[current].mirror_index; 00236 if (mirror_index == INEXISTENT_VERTEX ) { 00237 return _DNN->NearestNeighbourDistance(main_index); 00238 } else { 00239 return ( 00240 _DNN->NearestNeighbourDistance(main_index) < 00241 _DNN->NearestNeighbourDistance(mirror_index)) ? 00242 _DNN->NearestNeighbourDistance(main_index) : 00243 _DNN->NearestNeighbourDistance(mirror_index) ; 00244 } 00245 00246 } 00247 00248 inline bool Dnn3piCylinder::Valid(const int & index) const { 00249 return (_DNN->Valid(_mirror_info[index].main_index)); 00250 } 00251 00252 00253 inline Dnn3piCylinder::~Dnn3piCylinder() { 00254 delete _DNN; 00255 } 00256 00257 00258 FASTJET_END_NAMESPACE 00259 00260 #endif // __FASTJET_DNN3PICYLINDER_HH__ 00261 #endif // DROP_CGAL