FastJet 3.0beta1
Dnn3piCylinder.hh
00001 //STARTHEADER
00002 // $Id: Dnn3piCylinder.hh 1761 2010-09-16 10:43:18Z soyez $
00003 //
00004 // Copyright (c) 2005-2006, Matteo Cacciari and Gavin Salam
00005 //
00006 //----------------------------------------------------------------------
00007 // This file is part of FastJet.
00008 //
00009 //  FastJet is free software; you can redistribute it and/or modify
00010 //  it under the terms of the GNU General Public License as published by
00011 //  the Free Software Foundation; either version 2 of the License, or
00012 //  (at your option) any later version.
00013 //
00014 //  The algorithms that underlie FastJet have required considerable
00015 //  development and are described in hep-ph/0512210. If you use
00016 //  FastJet as part of work towards a scientific publication, please
00017 //  include a citation to the FastJet paper.
00018 //
00019 //  FastJet is distributed in the hope that it will be useful,
00020 //  but WITHOUT ANY WARRANTY; without even the implied warranty of
00021 //  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00022 //  GNU General Public License for more details.
00023 //
00024 //  You should have received a copy of the GNU General Public License
00025 //  along with FastJet; if not, write to the Free Software
00026 //  Foundation, Inc.:
00027 //      59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
00028 //----------------------------------------------------------------------
00029 //ENDHEADER
00030 
00031 
00032 #ifndef DROP_CGAL // in case we do not have the code for CGAL
00033 #ifndef __FASTJET_DNN3PICYLINDER_HH__
00034 #define __FASTJET_DNN3PICYLINDER_HH__
00035 
00036 #include "fastjet/internal/DynamicNearestNeighbours.hh"
00037 #include "fastjet/internal/DnnPlane.hh"
00038 #include "fastjet/internal/numconsts.hh"
00039 
00040 FASTJET_BEGIN_NAMESPACE      // defined in fastjet/internal/base.hh
00041 
00042 /// \if internal_doc
00043 /// @ingroup internal
00044 /// \class Dnn3piCylinder
00045 /// class derived from DynamicNearestNeighbours that provides an
00046 /// implementation for the surface of cylinder (using one 
00047 /// DnnPlane object spanning 0--3pi).
00048 /// \endif
00049 class Dnn3piCylinder : public DynamicNearestNeighbours {
00050  public:
00051   /// empty initaliser
00052   Dnn3piCylinder() {}
00053 
00054   /// Initialiser from a set of points on an Eta-Phi plane, where
00055   /// eta can have an arbitrary ranges and phi must be in range
00056   /// 0 <= phi < 2pi;
00057   /// 
00058   /// NB: this class is more efficient than the plain Dnn4piCylinder
00059   /// class, but can give wrong answers when the nearest neighbour is
00060   /// further away than 2pi (in this case a point's nearest neighbour
00061   /// becomes itself, because it is considered to be a distance 2pi
00062   /// away). For the kt-algorithm (e.g.) this is actually not a
00063   /// problem (the distance need only be accurate when it is less than
00064   /// R), so we can tell the routine to ignore this problem --
00065   /// alternatively the routine will crash if it detects it occurring
00066   /// (only when finding the nearest neighbour index, not its
00067   /// distance).
00068   Dnn3piCylinder(const std::vector<EtaPhi> &,
00069                  const bool & ignore_nearest_is_mirror = false,
00070                  const bool & verbose = false );
00071 
00072   /// Returns the index of  the nearest neighbour of point labelled
00073   /// by ii (assumes ii is valid)
00074   int NearestNeighbourIndex(const int & ii) const ;
00075 
00076   /// Returns the distance to the nearest neighbour of point labelled
00077   /// by index ii (assumes ii is valid)
00078   double NearestNeighbourDistance(const int & ii) const ;
00079 
00080   /// Returns true iff the given index corresponds to a point that
00081   /// exists in the DNN structure (meaning that it has been added, and
00082   /// not removed in the meantime)
00083   bool Valid(const int & index) const;
00084 
00085   void RemoveAndAddPoints(const std::vector<int> & indices_to_remove,
00086                           const std::vector<EtaPhi> & points_to_add,
00087                           std::vector<int> & indices_added,
00088                           std::vector<int> & indices_of_updated_neighbours);
00089 
00090   ~Dnn3piCylinder();
00091 
00092  private:
00093 
00094   // our extras to help us navigate, find distance, etc.
00095   const static int INEXISTENT_VERTEX=-3;
00096 
00097   bool _verbose;
00098 
00099   bool _ignore_nearest_is_mirror;
00100 
00101   /// Picture of how things will work... Copy 0--pi part of the 0--2pi
00102   /// cylinder into a region 2pi--3pi of a Euclidean plane. Below we
00103   /// show points labelled by + that have a mirror image in this
00104   /// manner, while points labelled by * do not have a mirror image.
00105   ///                                     
00106   ///      |           .     |            
00107   ///      |           .     |            
00108   ///      |           .     |            
00109   ///      |           .     |            
00110   ///      |        2  .     |            
00111   ///      |        *  .     |            
00112   ///      | +         . +   |            
00113   ///      | 0         . 1   |
00114   ///      |           .     |
00115   ///      0          2pi   3pi
00116   ///                
00117   /// Each "true" point has its true "cylinder" index (the index that
00118   /// is known externally to this class) as well as euclidean plane
00119   /// indices (main_index and mirror index in the MirrorVertexInfo
00120   /// structure), which are private concepts of this class.
00121   /// 
00122   /// In above picture our structures would hold the following info
00123   /// (the picture shows the euclidean-plane numbering)
00124   ///
00125   /// _mirror_info[cylinder_index = 0] = (0, 1)
00126   /// _mirror_info[cylinder_index = 1] = (2, INEXISTENT_VERTEX)
00127   ///
00128   /// We also need to be able to go from the euclidean plane indices
00129   /// back to the "true" cylinder index, and for this purpose we use
00130   /// the vector _cylinder_index_of_plane_vertex[...], which in the above example has
00131   /// the following contents
00132   ///
00133   /// _cylinder_index_of_plane_vertex[0] = 0
00134   /// _cylinder_index_of_plane_vertex[1] = 0
00135   /// _cylinder_index_of_plane_vertex[2] = 1
00136   ///
00137 
00138   /// 
00139   struct MirrorVertexInfo {
00140     /// index of the given point (appearing in the range 0--2pi) in the 
00141     /// 0--3pi euclidean plane structure (position will coincide with
00142     /// that on the 0--2pi cylinder, but index labelling it will be
00143     /// different)
00144     int main_index; 
00145     /// index of the mirror point (appearing in the range 2pi--3pi) in the
00146     /// 0--3pi euclidean plane structure
00147     int mirror_index; 
00148   };
00149 
00150   // for each "true" vertex we have reference to indices in the euclidean
00151   // plane structure
00152   std::vector<MirrorVertexInfo> _mirror_info;
00153   // for each index in the euclidean 0--3pi plane structure we want to
00154   // be able to get back to the "true" vertex index on the overall
00155   // 0--2pi cylinder structure
00156   std::vector<int> _cylinder_index_of_plane_vertex;
00157 
00158   // NB: we define POINTERS here because the initialisation gave
00159   //     us problems (things crashed!), perhaps because in practice
00160   //     we were making a copy without being careful and defining
00161   //     a proper copy constructor.
00162   DnnPlane * _DNN;
00163 
00164   /// given a phi value in the 0--2pi range return one 
00165   /// in the pi--3pi range.
00166   inline EtaPhi _remap_phi(const EtaPhi & point) {
00167     double phi = point.second;
00168     if (phi < pi) { phi += twopi ;}
00169     return EtaPhi(point.first, phi);}
00170 
00171 
00172   //----------------------------------------------------------------------
00173   /// What on earth does this do?
00174   ///
00175   /// Example: last true "cylinder" index was 15
00176   ///          last plane index was 23
00177   /// 
00178   /// Then: _cylinder_index_of_plane_vertex.size() = 24 and 
00179   ///       _mirror_info.size() = 16
00180   ///
00181   /// IF cylinder_point's phi < pi then
00182   ///   create:  _mirror_info[16] = (main_index = 24, mirror_index=25) 
00183   ///            _cylinder_index_of_plane_vertex[24] = 16
00184   ///            _cylinder_index_of_plane_vertex[25] = 16
00185   /// ELSE
00186   ///  create: _mirror_info[16] = (main_index = 24, mirror_index=INEXISTENT..) 
00187   ///          _cylinder_index_of_plane_vertex[24] = 16
00188   ///
00189   /// ADDITIONALLY push the cylinder_point (and if it exists the mirror
00190   /// copy) onto the vector plane_points.
00191   void _RegisterCylinderPoint (const EtaPhi & cylinder_point,
00192                                std::vector<EtaPhi> & plane_points);
00193 };
00194 
00195 
00196 // here follow some inline implementations of the simpler of the
00197 // functions defined above
00198 
00199 //----------------------------------------------------------------------
00200 /// Note: one of the difficulties of the 0--3pi mapping is that
00201 /// a point may have its mirror copy as its own nearest neighbour
00202 /// (if no other point is within a distance of 2pi). This does
00203 /// not matter for the kt_algorithm with
00204 /// reasonable values of radius, but might matter for a general use
00205 /// of this algorithm -- depending on whether or not the user has
00206 /// initialised the class with instructions to ignore this problem the
00207 /// program will detect and ignore it, or crash.
00208 inline int Dnn3piCylinder::NearestNeighbourIndex(const int & current) const {
00209   int main_index = _mirror_info[current].main_index;
00210   int mirror_index = _mirror_info[current].mirror_index;
00211   int plane_index;
00212   if (mirror_index == INEXISTENT_VERTEX ) {
00213     plane_index = _DNN->NearestNeighbourIndex(main_index);
00214   } else {
00215     plane_index = (
00216         _DNN->NearestNeighbourDistance(main_index) < 
00217         _DNN->NearestNeighbourDistance(mirror_index)) ? 
00218       _DNN->NearestNeighbourIndex(main_index) : 
00219       _DNN->NearestNeighbourIndex(mirror_index) ; 
00220   }
00221   int this_cylinder_index = _cylinder_index_of_plane_vertex[plane_index];
00222   // either the user has acknowledged the fact that they may get the
00223   // mirror copy as the closest point, or crash if it should occur
00224   // that mirror copy is the closest point.
00225   assert(_ignore_nearest_is_mirror || this_cylinder_index != current);
00226   //if (this_cylinder_index == current) {
00227   //  std::cerr << "WARNING point "<<current<<
00228   //    " has its mirror copy as its own nearest neighbour"<<endl;
00229   //}
00230   return this_cylinder_index;
00231 }
00232 
00233 inline double Dnn3piCylinder::NearestNeighbourDistance(const int & current) const {
00234   int main_index = _mirror_info[current].main_index;
00235   int mirror_index = _mirror_info[current].mirror_index;
00236   if (mirror_index == INEXISTENT_VERTEX ) {
00237     return _DNN->NearestNeighbourDistance(main_index);
00238   } else {
00239     return (
00240         _DNN->NearestNeighbourDistance(main_index) < 
00241         _DNN->NearestNeighbourDistance(mirror_index)) ? 
00242       _DNN->NearestNeighbourDistance(main_index) : 
00243       _DNN->NearestNeighbourDistance(mirror_index) ; 
00244   }
00245  
00246 }
00247 
00248 inline bool Dnn3piCylinder::Valid(const int & index) const {
00249   return (_DNN->Valid(_mirror_info[index].main_index));
00250 }
00251 
00252 
00253 inline Dnn3piCylinder::~Dnn3piCylinder() {
00254   delete _DNN; 
00255 }
00256 
00257 
00258 FASTJET_END_NAMESPACE
00259 
00260 #endif //  __FASTJET_DNN3PICYLINDER_HH__
00261 #endif //  DROP_CGAL 
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends