FastJet 3.0beta1
|
00001 //STARTHEADER 00002 // $Id: SearchTree.hh 1761 2010-09-16 10:43:18Z soyez $ 00003 // 00004 // Copyright (c) 2005-2006, Matteo Cacciari and Gavin Salam 00005 // 00006 //---------------------------------------------------------------------- 00007 // This file is part of FastJet. 00008 // 00009 // FastJet is free software; you can redistribute it and/or modify 00010 // it under the terms of the GNU General Public License as published by 00011 // the Free Software Foundation; either version 2 of the License, or 00012 // (at your option) any later version. 00013 // 00014 // The algorithms that underlie FastJet have required considerable 00015 // development and are described in hep-ph/0512210. If you use 00016 // FastJet as part of work towards a scientific publication, please 00017 // include a citation to the FastJet paper. 00018 // 00019 // FastJet is distributed in the hope that it will be useful, 00020 // but WITHOUT ANY WARRANTY; without even the implied warranty of 00021 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00022 // GNU General Public License for more details. 00023 // 00024 // You should have received a copy of the GNU General Public License 00025 // along with FastJet; if not, write to the Free Software 00026 // Foundation, Inc.: 00027 // 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 00028 //---------------------------------------------------------------------- 00029 //ENDHEADER 00030 00031 00032 #ifndef __FASTJET_SEARCHTREE_HH__ 00033 #define __FASTJET_SEARCHTREE_HH__ 00034 00035 #include<vector> 00036 #include<cassert> 00037 #include<cstddef> 00038 #include "fastjet/internal/base.hh" 00039 00040 FASTJET_BEGIN_NAMESPACE // defined in fastjet/internal/base.hh 00041 00042 00043 //====================================================================== 00044 /// \if internal_doc 00045 /// @ingroup internal 00046 /// \class SearchTree 00047 /// Efficient class for a search tree 00048 /// 00049 /// This is the class for a search tree designed to be especially efficient 00050 /// when looking for successors and predecessors (to be used in Chan's 00051 /// CP algorithm). It has the requirement that the maximum size of the 00052 /// search tree must be known in advance. 00053 /// \endif 00054 template<class T> class SearchTree { 00055 public: 00056 00057 class Node; 00058 class circulator; 00059 class const_circulator; 00060 00061 /// constructor for a search tree from an ordered vector 00062 SearchTree(const std::vector<T> & init); 00063 00064 /// constructor for a search tree from an ordered vector allowing 00065 /// for future growth beyond the current size, up to max_size 00066 SearchTree(const std::vector<T> & init, unsigned int max_size); 00067 00068 /// remove the node corresponding to node_index from the search tree 00069 void remove(unsigned node_index); 00070 void remove(typename SearchTree::Node * node); 00071 void remove(typename SearchTree::circulator & circ); 00072 00073 /// insert the supplied value into the tree and return a pointer to 00074 /// the relevant SearchTreeNode. 00075 //Node * insert(const T & value); 00076 circulator insert(const T & value); 00077 00078 const Node & operator[](int i) const {return _nodes[i];}; 00079 00080 /// return the number of elements currently in the search tree 00081 unsigned int size() const {return _nodes.size() - _available_nodes.size();} 00082 00083 /// check that the structure we've obtained makes sense... 00084 void verify_structure(); 00085 void verify_structure_linear() const; 00086 void verify_structure_recursive(const Node * , const Node * , const Node * ) const; 00087 00088 /// print out all elements... 00089 void print_elements(); 00090 00091 // tracking the depth may have some speed overhead -- so leave it 00092 // out for the time being... 00093 #ifdef TRACK_DEPTH 00094 /// the max depth the tree has ever reached 00095 inline unsigned int max_depth() const {return _max_depth;}; 00096 #else 00097 inline unsigned int max_depth() const {return 0;}; 00098 #endif 00099 00100 int loc(const Node * node) const ; 00101 00102 /// return predecessor by walking through the tree 00103 Node * _find_predecessor(const Node *); 00104 /// return successor by walking through the tree 00105 Node * _find_successor(const Node *); 00106 00107 const Node & operator[](unsigned int i) const {return _nodes[i];}; 00108 00109 /// return a circulator to some place in the tree (with a circulator 00110 /// you don't care where...) 00111 const_circulator somewhere() const; 00112 circulator somewhere(); 00113 00114 private: 00115 00116 void _initialize(const std::vector<T> & init); 00117 00118 std::vector<Node> _nodes; 00119 std::vector<Node *> _available_nodes; 00120 Node * _top_node; 00121 unsigned int _n_removes; 00122 00123 00124 /// recursive routine for doing the initial connections assuming things 00125 /// are ordered. Assumes this_one's parent is labelled, and was 00126 /// generated at a scale "scale" -- connections will be carried out 00127 /// including left edge and excluding right edge 00128 void _do_initial_connections(unsigned int this_one, unsigned int scale, 00129 unsigned int left_edge, unsigned int right_edge, 00130 unsigned int depth); 00131 00132 00133 #ifdef TRACK_DEPTH 00134 unsigned int _max_depth; 00135 #endif 00136 00137 }; 00138 00139 00140 //====================================================================== 00141 /// \if internal_doc 00142 /// @ingroup internal 00143 /// \class SearchTree::Node 00144 /// A node in the search tree 00145 /// \endif 00146 template<class T> class SearchTree<T>::Node{ 00147 public: 00148 Node() {}; /// default constructor 00149 00150 00151 /// returns tree if all the tree-related links are set to null for this node 00152 bool treelinks_null() const { 00153 return ((parent==0) && (left==0) && (right==0));}; 00154 00155 /// set all the tree-related links are set to null for this node 00156 inline void nullify_treelinks() { 00157 parent = NULL; 00158 left = NULL; 00159 right = NULL; 00160 }; 00161 00162 /// if my parent exists, determine whether I am it's left or right 00163 /// node and set the relevant link equal to XX. 00164 void reset_parents_link_to_me(Node * XX); 00165 00166 T value; 00167 Node * left; 00168 Node * right; 00169 Node * parent; 00170 Node * successor; 00171 Node * predecessor; 00172 }; 00173 00174 //---------------------------------------------------------------------- 00175 template<class T> void SearchTree<T>::Node::reset_parents_link_to_me(typename SearchTree<T>::Node * XX) { 00176 if (parent == NULL) {return;} 00177 if (parent->right == this) {parent->right = XX;} 00178 else {parent->left = XX;} 00179 } 00180 00181 00182 00183 //====================================================================== 00184 /// \if internal_doc 00185 /// @ingroup internal 00186 /// \class SearchTree::circulator 00187 /// circulator for the search tree 00188 /// \endif 00189 template<class T> class SearchTree<T>::circulator{ 00190 public: 00191 00192 // so that it can access out _node object; 00193 friend class SearchTree<T>::const_circulator; 00194 friend class SearchTree<T>; 00195 00196 circulator() : _node(NULL) {} 00197 00198 circulator(Node * node) : _node(node) {} 00199 00200 const T * operator->() const {return &(_node->value);} 00201 T * operator->() {return &(_node->value);} 00202 const T & operator*() const {return _node->value;} 00203 T & operator*() {return _node->value;} 00204 00205 /// prefix increment (structure copied from stl_bvector.h) 00206 circulator & operator++() { 00207 _node = _node->successor; 00208 return *this;} 00209 00210 /// postfix increment ["int" argument tells compiler it's postfix] 00211 /// (structure copied from stl_bvector.h) 00212 circulator operator++(int) { 00213 circulator tmp = *this; 00214 _node = _node->successor; 00215 return tmp;} 00216 00217 /// prefix decrement (structure copied from stl_bvector.h) 00218 circulator & operator--() { 00219 _node = _node->predecessor; 00220 return *this;} 00221 00222 /// postfix decrement ["int" argument tells compiler it's postfix] 00223 /// (structure copied from stl_bvector.h) 00224 circulator operator--(int) { 00225 circulator tmp = *this; 00226 _node = _node->predecessor; 00227 return tmp;} 00228 00229 /// return a circulator referring to the next node 00230 circulator next() const { 00231 return circulator(_node->successor);} 00232 00233 /// return a circulator referring to the previous node 00234 circulator previous() const { 00235 return circulator(_node->predecessor);} 00236 00237 bool operator!=(const circulator & other) const {return other._node != _node;} 00238 bool operator==(const circulator & other) const {return other._node == _node;} 00239 00240 private: 00241 Node * _node; 00242 }; 00243 00244 00245 //====================================================================== 00246 /// \if internal_doc 00247 /// @ingroup internal 00248 /// \class SearchTree::const_circulator 00249 /// A const_circulator for the search tree 00250 /// \endif 00251 template<class T> class SearchTree<T>::const_circulator{ 00252 public: 00253 00254 const_circulator() : _node(NULL) {} 00255 00256 const_circulator(const Node * node) : _node(node) {} 00257 const_circulator(const circulator & circ) :_node(circ._node) {} 00258 00259 const T * operator->() {return &(_node->value);} 00260 const T & operator*() const {return _node->value;} 00261 00262 /// prefix increment (structure copied from stl_bvector.h) 00263 const_circulator & operator++() { 00264 _node = _node->successor; 00265 return *this;} 00266 00267 /// postfix increment ["int" argument tells compiler it's postfix] 00268 /// (structure copied from stl_bvector.h) 00269 const_circulator operator++(int) { 00270 const_circulator tmp = *this; 00271 _node = _node->successor; 00272 return tmp;} 00273 00274 00275 /// prefix decrement (structure copied from stl_bvector.h) 00276 const_circulator & operator--() { 00277 _node = _node->predecessor; 00278 return *this;} 00279 00280 /// postfix decrement ["int" argument tells compiler it's postfix] 00281 /// (structure copied from stl_bvector.h) 00282 const_circulator operator--(int) { 00283 const_circulator tmp = *this; 00284 _node = _node->predecessor; 00285 return tmp;} 00286 00287 /// return a circulator referring to the next node 00288 const_circulator next() const { 00289 return const_circulator(_node->successor);} 00290 00291 /// return a circulator referring to the previous node 00292 const_circulator previous() const { 00293 return const_circulator(_node->predecessor);} 00294 00295 00296 00297 bool operator!=(const const_circulator & other) const {return other._node != _node;} 00298 bool operator==(const const_circulator & other) const {return other._node == _node;} 00299 00300 private: 00301 const Node * _node; 00302 }; 00303 00304 00305 00306 00307 //---------------------------------------------------------------------- 00308 /// initialise from a sorted initial array allowing for a larger 00309 /// maximum size of the array... 00310 template<class T> SearchTree<T>::SearchTree(const std::vector<T> & init, 00311 unsigned int max_size) : 00312 _nodes(max_size) { 00313 00314 _available_nodes.reserve(max_size); 00315 _available_nodes.resize(max_size - init.size()); 00316 for (unsigned int i = init.size(); i < max_size; i++) { 00317 _available_nodes[i-init.size()] = &(_nodes[i]); 00318 } 00319 00320 _initialize(init); 00321 } 00322 00323 //---------------------------------------------------------------------- 00324 /// initialise from a sorted initial array 00325 template<class T> SearchTree<T>::SearchTree(const std::vector<T> & init) : 00326 _nodes(init.size()), _available_nodes(0) { 00327 00328 // reserve space for the list of available nodes 00329 _available_nodes.reserve(init.size()); 00330 _initialize(init); 00331 } 00332 00333 //---------------------------------------------------------------------- 00334 /// do the actual hard work of initialization 00335 template<class T> void SearchTree<T>::_initialize(const std::vector<T> & init) { 00336 00337 _n_removes = 0; 00338 unsigned n = init.size(); 00339 assert(n>=1); 00340 00341 // reserve space for the list of available nodes 00342 //_available_nodes.reserve(); 00343 00344 #ifdef TRACK_DEPTH 00345 _max_depth = 0; 00346 #endif 00347 00348 00349 // validate the input 00350 for (unsigned int i = 1; i<n; i++) { 00351 assert(!(init[i] < init[i-1])); 00352 } 00353 00354 // now initialise the vector; link neighbours in the sequence 00355 for(unsigned int i = 0; i < n; i++) { 00356 _nodes[i].value = init[i]; 00357 _nodes[i].predecessor = (& (_nodes[i])) - 1; 00358 _nodes[i].successor = (& (_nodes[i])) + 1; 00359 _nodes[i].nullify_treelinks(); 00360 } 00361 // make a loop structure so that we can circulate... 00362 _nodes[0].predecessor = (& (_nodes[n-1])); 00363 _nodes[n-1].successor = (& (_nodes[0])); 00364 00365 // now label the rest of the nodes 00366 unsigned int scale = (n+1)/2; 00367 unsigned int top = std::min(n-1,scale); 00368 _nodes[top].parent = NULL; 00369 _top_node = &(_nodes[top]); 00370 _do_initial_connections(top, scale, 0, n, 0); 00371 00372 // make sure things are sensible... 00373 //verify_structure(); 00374 } 00375 00376 00377 00378 //---------------------------------------------------------------------- 00379 template<class T> inline int SearchTree<T>::loc(const Node * node) const {return node == NULL? 00380 -999 : node - &(_nodes[0]);} 00381 00382 00383 //---------------------------------------------------------------------- 00384 /// Recursive creation of connections, assuming the _nodes vector is 00385 /// completely filled and ordered 00386 template<class T> void SearchTree<T>::_do_initial_connections( 00387 unsigned int this_one, 00388 unsigned int scale, 00389 unsigned int left_edge, 00390 unsigned int right_edge, 00391 unsigned int depth 00392 ) { 00393 00394 #ifdef TRACK_DEPTH 00395 // keep track of tree depth for checking things stay reasonable... 00396 _max_depth = max(depth, _max_depth); 00397 #endif 00398 00399 //std::cout << this_one << " "<< scale<< std::endl; 00400 unsigned int ref_new_scale = (scale+1)/2; 00401 00402 // work through children to our left 00403 unsigned new_scale = ref_new_scale; 00404 bool did_child = false; 00405 while(true) { 00406 int left = this_one - new_scale; // be careful here to use signed int... 00407 // if there is something unitialised to our left, link to it 00408 if (left >= static_cast<int>(left_edge) 00409 && _nodes[left].treelinks_null() ) { 00410 _nodes[left].parent = &(_nodes[this_one]); 00411 _nodes[this_one].left = &(_nodes[left]); 00412 // create connections between left_edge and this_one 00413 _do_initial_connections(left, new_scale, left_edge, this_one, depth+1); 00414 did_child = true; 00415 break; 00416 } 00417 // reduce the scale so as to try again 00418 unsigned int old_new_scale = new_scale; 00419 new_scale = (old_new_scale + 1)/2; 00420 // unless we've reached end of tree 00421 if (new_scale == old_new_scale) break; 00422 } 00423 if (!did_child) {_nodes[this_one].left = NULL;} 00424 00425 00426 // work through children to our right 00427 new_scale = ref_new_scale; 00428 did_child = false; 00429 while(true) { 00430 unsigned int right = this_one + new_scale; 00431 if (right < right_edge && _nodes[right].treelinks_null()) { 00432 _nodes[right].parent = &(_nodes[this_one]); 00433 _nodes[this_one].right = &(_nodes[right]); 00434 // create connections between this_one+1 and right_edge 00435 _do_initial_connections(right, new_scale, this_one+1,right_edge,depth+1); 00436 did_child = true; 00437 break; 00438 } 00439 // reduce the scale so as to try again 00440 unsigned int old_new_scale = new_scale; 00441 new_scale = (old_new_scale + 1)/2; 00442 // unless we've reached end of tree 00443 if (new_scale == old_new_scale) break; 00444 } 00445 if (!did_child) {_nodes[this_one].right = NULL;} 00446 00447 } 00448 00449 00450 00451 //---------------------------------------------------------------------- 00452 template<class T> void SearchTree<T>::remove(unsigned int node_index) { 00453 remove(&(_nodes[node_index])); 00454 } 00455 00456 //---------------------------------------------------------------------- 00457 template<class T> void SearchTree<T>::remove(circulator & circ) { 00458 remove(circ._node); 00459 } 00460 00461 //---------------------------------------------------------------------- 00462 // Useful reference for this: 00463 // http://en.wikipedia.org/wiki/Binary_search_tree#Deletion 00464 template<class T> void SearchTree<T>::remove(typename SearchTree<T>::Node * node) { 00465 00466 // we don't remove things from the tree if we've reached the last 00467 // elements... (is this wise?) 00468 assert(size() > 1); // switch this to throw...? 00469 assert(!node->treelinks_null()); 00470 00471 // deal with relinking predecessor and successor 00472 node->predecessor->successor = node->successor; 00473 node->successor->predecessor = node->predecessor; 00474 00475 if (node->left == NULL && node->right == NULL) { 00476 // node has no children, so remove it by nullifying the pointer 00477 // from the parent 00478 node->reset_parents_link_to_me(NULL); 00479 00480 } else if (node->left != NULL && node->right == NULL){ 00481 // make parent point to my child 00482 node->reset_parents_link_to_me(node->left); 00483 // and child to parent 00484 node->left->parent = node->parent; 00485 // sort out the top node... 00486 if (_top_node == node) {_top_node = node->left;} 00487 00488 } else if (node->left == NULL && node->right != NULL){ 00489 // make parent point to my child 00490 node->reset_parents_link_to_me(node->right); 00491 // and child to parent 00492 node->right->parent = node->parent; 00493 // sort out the top node... 00494 if (_top_node == node) {_top_node = node->right;} 00495 00496 } else { 00497 // we have two children; we will put a replacement in our place 00498 Node * replacement; 00499 //SearchTree<T>::Node * replacements_child; 00500 // chose predecessor or successor (one, then other, then first, etc...) 00501 bool use_predecessor = (_n_removes % 2 == 1); 00502 if (use_predecessor) { 00503 // Option 1: put predecessor in our place, and have its parent 00504 // point to its left child (as a predecessor it has no right child) 00505 replacement = node->predecessor; 00506 assert(replacement->right == NULL); // guaranteed if it's our predecessor 00507 // we have to be careful of replacing certain links when the 00508 // replacement is this node's child 00509 if (replacement != node->left) { 00510 if (replacement->left != NULL) { 00511 replacement->left->parent = replacement->parent;} 00512 replacement->reset_parents_link_to_me(replacement->left); 00513 replacement->left = node->left; 00514 } 00515 replacement->parent = node->parent; 00516 replacement->right = node->right; 00517 } else { 00518 // Option 2: put successor in our place, and have its parent 00519 // point to its right child (as a successor it has no left child) 00520 replacement = node->successor; 00521 assert(replacement->left == NULL); // guaranteed if it's our successor 00522 if (replacement != node->right) { 00523 if (replacement->right != NULL) { 00524 replacement->right->parent = replacement->parent;} 00525 replacement->reset_parents_link_to_me(replacement->right); 00526 replacement->right = node->right; 00527 } 00528 replacement->parent = node->parent; 00529 replacement->left = node->left; 00530 } 00531 node->reset_parents_link_to_me(replacement); 00532 00533 // make sure node's original children now point to the replacement 00534 if (node->left != replacement) {node->left->parent = replacement;} 00535 if (node->right != replacement) {node->right->parent = replacement;} 00536 00537 // sort out the top node... 00538 if (_top_node == node) {_top_node = replacement;} 00539 } 00540 00541 // make sure we leave something nice and clean... 00542 node->nullify_treelinks(); 00543 node->predecessor = NULL; 00544 node->successor = NULL; 00545 00546 // for bookkeeping (and choosing whether to use pred. or succ.) 00547 _n_removes++; 00548 // for when we next need access to a free node... 00549 _available_nodes.push_back(node); 00550 } 00551 00552 00553 //---------------------------------------------------------------------- 00554 //template<class T> typename SearchTree<T>::Node * SearchTree<T>::insert(const T & value) { 00555 00556 //---------------------------------------------------------------------- 00557 template<class T> typename SearchTree<T>::circulator SearchTree<T>::insert(const T & value) { 00558 // make sure we don't exceed allowed number of nodes... 00559 assert(_available_nodes.size() > 0); 00560 00561 Node * node = _available_nodes.back(); 00562 _available_nodes.pop_back(); 00563 node->value = value; 00564 00565 Node * location = _top_node; 00566 Node * old_location = NULL; 00567 bool on_left = true; // (init not needed -- but soothes g++4) 00568 // work through tree until we reach its end 00569 #ifdef TRACK_DEPTH 00570 unsigned int depth = 0; 00571 #endif 00572 while(location != NULL) { 00573 #ifdef TRACK_DEPTH 00574 depth++; 00575 #endif 00576 old_location = location; 00577 on_left = value < location->value; 00578 if (on_left) {location = location->left;} 00579 else {location = location->right;} 00580 } 00581 #ifdef TRACK_DEPTH 00582 _max_depth = max(depth, _max_depth); 00583 #endif 00584 // now create tree links 00585 node->parent = old_location; 00586 if (on_left) {node->parent->left = node;} 00587 else {node->parent->right = node;} 00588 node->left = NULL; 00589 node->right = NULL; 00590 // and create predecessor / successor links 00591 node->predecessor = _find_predecessor(node); 00592 if (node->predecessor != NULL) { 00593 // it exists, so make use of its info (will include a cyclic case, 00594 // when successor is round the bend) 00595 node->successor = node->predecessor->successor; 00596 node->predecessor->successor = node; 00597 node->successor->predecessor = node; 00598 } else { 00599 // deal with case when we are left-most edge of tree (then successor 00600 // will exist...) 00601 node->successor = _find_successor(node); 00602 assert(node->successor != NULL); // can only happen if we're sole element 00603 // (but not allowed, since tree size>=1) 00604 node->predecessor = node->successor->predecessor; 00605 node->successor->predecessor = node; 00606 node->predecessor->successor = node; 00607 } 00608 00609 return circulator(node); 00610 } 00611 00612 00613 //---------------------------------------------------------------------- 00614 template<class T> void SearchTree<T>::verify_structure() { 00615 00616 // do a check running through all elements 00617 verify_structure_linear(); 00618 00619 // do a recursive check down tree from top 00620 00621 // first establish the extremities 00622 const Node * left_limit = _top_node; 00623 while (left_limit->left != NULL) {left_limit = left_limit->left;} 00624 const Node * right_limit = _top_node; 00625 while (right_limit->right != NULL) {right_limit = right_limit->right;} 00626 00627 // then actually do recursion 00628 verify_structure_recursive(_top_node, left_limit, right_limit); 00629 } 00630 00631 00632 //---------------------------------------------------------------------- 00633 template<class T> void SearchTree<T>::verify_structure_recursive( 00634 const typename SearchTree<T>::Node * element, 00635 const typename SearchTree<T>::Node * left_limit, 00636 const typename SearchTree<T>::Node * right_limit) const { 00637 00638 assert(!(element->value < left_limit->value)); 00639 assert(!(right_limit->value < element->value)); 00640 00641 const Node * left = element->left; 00642 if (left != NULL) { 00643 assert(!(element->value < left->value)); 00644 if (left != left_limit) { 00645 // recurse down the tree with this element as the right-hand limit 00646 verify_structure_recursive(left, left_limit, element);} 00647 } 00648 00649 const Node * right = element->right; 00650 if (right != NULL) { 00651 assert(!(right->value < element->value)); 00652 if (right != right_limit) { 00653 // recurse down the tree with this element as the left-hand limit 00654 verify_structure_recursive(right, element, right_limit);} 00655 } 00656 } 00657 00658 //---------------------------------------------------------------------- 00659 template<class T> void SearchTree<T>::verify_structure_linear() const { 00660 00661 //print_elements(); 00662 00663 unsigned n_top = 0; 00664 unsigned n_null = 0; 00665 for(unsigned i = 0; i < _nodes.size(); i++) { 00666 const typename SearchTree<T>::Node * node = &(_nodes[i]); 00667 // make sure node is defined 00668 if (node->treelinks_null()) {n_null++; continue;} 00669 00670 // make sure of the number of "top" nodes 00671 if (node->parent == NULL) { 00672 n_top++; 00673 //assert(node->left != NULL); 00674 //assert(node->right != NULL); 00675 } else { 00676 // make sure that I am a child of my parent... 00677 //assert((node->parent->left == node) || (node->parent->right == node)); 00678 assert((node->parent->left == node) ^ (node->parent->right == node)); 00679 } 00680 00681 // when there is a left child make sure it's value is ordered 00682 // (note use of !(b<a), to allow for a<=b while using just the < 00683 // operator) 00684 if (node->left != NULL) { 00685 assert(!(node->value < node->left->value ));} 00686 00687 // when there is a right child make sure it's value is ordered 00688 if (node->right != NULL) { 00689 assert(!(node->right->value < node->value ));} 00690 00691 } 00692 assert(n_top == 1 || (n_top == 0 && size() <= 1) ); 00693 assert(n_null == _available_nodes.size() || 00694 (n_null == _available_nodes.size() + 1 && size() == 1)); 00695 } 00696 00697 00698 //---------------------------------------------------------------------- 00699 template<class T> typename SearchTree<T>::Node * SearchTree<T>::_find_predecessor(const typename SearchTree<T>::Node * node) { 00700 00701 typename SearchTree<T>::Node * newnode; 00702 if (node->left != NULL) { 00703 // go down left, and then down right as far as possible. 00704 newnode = node->left; 00705 while(newnode->right != NULL) {newnode = newnode->right;} 00706 return newnode; 00707 } else { 00708 const typename SearchTree<T>::Node * lastnode = node; 00709 newnode = node->parent; 00710 // go up the tree as long as we're going right (when we go left then 00711 // we've found something smaller, so stop) 00712 while(newnode != NULL) { 00713 if (newnode->right == lastnode) {return newnode;} 00714 lastnode = newnode; 00715 newnode = newnode->parent; 00716 } 00717 return newnode; 00718 } 00719 } 00720 00721 00722 //---------------------------------------------------------------------- 00723 template<class T> typename SearchTree<T>::Node * SearchTree<T>::_find_successor(const typename SearchTree<T>::Node * node) { 00724 00725 typename SearchTree<T>::Node * newnode; 00726 if (node->right != NULL) { 00727 // go down right, and then down left as far as possible. 00728 newnode = node->right; 00729 while(newnode->left != NULL) {newnode = newnode->left;} 00730 return newnode; 00731 } else { 00732 const typename SearchTree<T>::Node * lastnode = node; 00733 newnode = node->parent; 00734 // go up the tree as long as we're going left (when we go right then 00735 // we've found something larger, so stop) 00736 while(newnode != NULL) { 00737 if (newnode->left == lastnode) {return newnode;} 00738 lastnode = newnode; 00739 newnode = newnode->parent; 00740 } 00741 return newnode; 00742 } 00743 } 00744 00745 00746 //---------------------------------------------------------------------- 00747 // print out all the elements for visual checking... 00748 template<class T> void SearchTree<T>::print_elements() { 00749 typename SearchTree<T>::Node * base_node = &(_nodes[0]); 00750 typename SearchTree<T>::Node * node = base_node; 00751 00752 int n = _nodes.size(); 00753 for(; node - base_node < n ; node++) { 00754 printf("%4d parent:%4d left:%4d right:%4d pred:%4d succ:%4d value:%10.6f\n",loc(node), loc(node->parent), loc(node->left), loc(node->right), loc(node->predecessor),loc(node->successor),node->value); 00755 } 00756 } 00757 00758 //---------------------------------------------------------------------- 00759 template<class T> typename SearchTree<T>::circulator SearchTree<T>::somewhere() { 00760 return circulator(_top_node); 00761 } 00762 00763 00764 //---------------------------------------------------------------------- 00765 template<class T> typename SearchTree<T>::const_circulator SearchTree<T>::somewhere() const { 00766 return const_circulator(_top_node); 00767 } 00768 00769 00770 FASTJET_END_NAMESPACE 00771 00772 #endif // __FASTJET_SEARCHTREE_HH__