FastJet  3.4.0
fastjet_timing.cc
1 //STARTHEADER
2 // $Id$
3 //
4 // Copyright (c) 2005-2018, Matteo Cacciari, Gavin P. Salam and Gregory Soyez
5 //
6 //----------------------------------------------------------------------
7 // This file is part of FastJet.
8 //
9 // FastJet is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 2 of the License, or
12 // (at your option) any later version.
13 //
14 // The algorithms that underlie FastJet have required considerable
15 // development and are described in hep-ph/0512210. If you use
16 // FastJet as part of work towards a scientific publication, please
17 // include a citation to the FastJet paper.
18 //
19 // FastJet is distributed in the hope that it will be useful,
20 // but WITHOUT ANY WARRANTY; without even the implied warranty of
21 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 // GNU General Public License for more details.
23 //
24 // You should have received a copy of the GNU General Public License
25 // along with FastJet. If not, see <http://www.gnu.org/licenses/>.
26 //----------------------------------------------------------------------
27 //ENDHEADER
28 
29 
30 //----------------------------------------------------------------------
31 /// fastjet_timing.cc: Program to help time and test the fastjet package
32 ///
33 /// It reads files containing multiple events in the format
34 /// p1x p1y p1z E1
35 /// p2x p2y p2z E2
36 /// ...
37 /// #END
38 ///
39 /// An example input file containing 10 events is included as
40 /// data/Pythia-PtMin1000-LHC-10ev.dat
41 ///
42 /// Usage:
43 /// fastjet_timing [-strategy NUMBER] [-repeat nrepeats] [-massive] \
44 /// [-combine nevents] [-r Rparameter] [-incl ptmin] [...] \
45 /// < data_file
46 ///
47 /// where the clustering can be repeated to aid timing and multiple
48 /// events can be combined to get to larger multiplicities. Some options:
49 ///
50 /// -strategy N indicate stratgey from the enum FjStrategy (see
51 /// FjClusterSequence.hh).
52 ///
53 /// -combine nev for combining multiple events from the data file in order
54 /// to get to large multiplicities.
55 ///
56 /// -incl ptmin output of all inclusive jets with pt > ptmin is obtained
57 /// with the -incl option.
58 ///
59 /// -excld dcut output of all exclusive jets as obtained in a clustering
60 /// with dcut
61 ///
62 /// -massless read in only the 3-momenta and deduce energies assuming
63 /// that particles are massless
64 ///
65 /// -write for writing out detailed clustering sequence (valuable
66 /// for testing purposes)
67 ///
68 /// -unique_write writes out the sequence of dij's according to the
69 /// "unique_history_order" (useful for verifying consistency
70 /// between different clustering strategies).
71 ///
72 /// -cam switch to the inclusive Cambridge/Aachen algorithm --
73 /// note that the option -excld dcut provides a clustering
74 /// up to the dcut which is the minimum squared
75 /// distance between any pair of jets.
76 ///
77 #include "fastjet/PseudoJet.hh"
78 #include "fastjet/ClusterSequence.hh"
79 #include<iostream>
80 #include<sstream>
81 #include<valarray>
82 #include<vector>
83 #include <cstdio>
84 #include <cstdlib>
85 #include<cstddef> // for size_t
86 #include "CmdLine.hh"
87 
88 using namespace std;
89 
90 // to avoid excessive typing, define an abbreviation for the
91 // fastjet namespace
92 namespace fj = fastjet;
93 
94 inline double pow2(const double x) {return x*x;}
95 
96 /// a program to test and time the kt algorithm as implemented in fastjet
97 int main (int argc, char ** argv) {
98 
99  CmdLine cmdline(argc,argv);
100  // allow the use to specify the fj::Strategy either through the
101  // -clever or the -strategy options (both will take numerical
102  // values); the latter will override the former.
103  fj::Strategy strategy = fj::Strategy(cmdline.int_val("-strategy",
104  cmdline.int_val("-clever", fj::Best)));
105  int repeat = cmdline.int_val("-repeat",1);
106  int combine = cmdline.int_val("-combine",1);
107  bool write = cmdline.present("-write");
108  bool unique_write = cmdline.present("-unique_write");
109  bool hydjet = cmdline.present("-hydjet");
110  double ktR = cmdline.double_val("-r",1.0);
111  double inclkt = cmdline.double_val("-incl",-1.0);
112  int excln = cmdline.int_val ("-excln",-1);
113  double excld = cmdline.double_val("-excld",-1.0);
114  double etamax = cmdline.double_val("-etamax",1.0e305);
115  bool show_constituents = cmdline.present("-const");
116  bool massless = cmdline.present("-massless");
117  int nev = cmdline.int_val("-nev",1);
118  bool add_dense_coverage = cmdline.present("-dense");
119 
120  // The following option causes the Cambridge algo to be used.
121  // Note that currently the only output that works sensibly here is
122  // "-incl 0"
123  fj::JetAlgorithm jet_algorithm;
124  if (cmdline.present("-cam")) {
125  jet_algorithm = fj::cambridge_algorithm;
126  } else {
127  jet_algorithm = fj::kt_algorithm;
128  }
129 
130  if (!cmdline.all_options_used()) {cerr <<
131  "Error: some options were not recognized"<<endl;
132  exit(-1);}
133 
134 
135  for (int iev = 0; iev < nev; iev++) {
136  vector<fj::PseudoJet> jets;
137  string line;
138  int ndone = 0;
139  while (getline(cin, line)) {
140  //cout << line<<endl;
141  istringstream linestream(line);
142  if (line == "#END") {
143  ndone += 1;
144  if (ndone == combine) {break;}
145  }
146  if (line.substr(0,1) == "#") {continue;}
147  valarray<double> fourvec(4);
148  if (hydjet) {
149  // special reading from hydjet.txt event record (though actually
150  // this is supposed to be a standard pythia event record, so
151  // being able to read from it is perhaps not so bad an idea...)
152  int ii, istat,id,m1,m2,d1,d2;
153  double mass;
154  linestream >> ii>> istat >> id >> m1 >> m2 >> d1 >> d2
155  >> fourvec[0] >> fourvec[1] >> fourvec[2] >> mass;
156  // current file contains mass of particle as 4th entry
157  if (istat == 1) {
158  fourvec[3] = sqrt(+pow2(fourvec[0])+pow2(fourvec[1])
159  +pow2(fourvec[2])+pow2(mass));
160  }
161  } else {
162  if (massless) {
163  linestream >> fourvec[0] >> fourvec[1] >> fourvec[2];
164  fourvec[3] = sqrt(pow2(fourvec[0])+pow2(fourvec[1])+pow2(fourvec[2]));}
165  else {
166  linestream >> fourvec[0] >> fourvec[1] >> fourvec[2] >> fourvec[3];
167  }
168  }
169  fj::PseudoJet psjet(fourvec);
170  if (abs(psjet.rap()) < etamax) {jets.push_back(psjet);}
171  }
172 
173  // add a fake underlying event which is very soft, uniformly distributed
174  // in eta,phi so as to allow one to reconstruct the area that is associated
175  // with each jet.
176  if (add_dense_coverage) {
177  srand(2);
178  int nphi = 60;
179  int neta = 100;
180  double kt = 1e-1;
181  for (int iphi = 0; iphi<nphi; iphi++) {
182  for (int ieta = -neta; ieta<neta+1; ieta++) {
183  double phi = (iphi+0.5) * (fj::twopi/nphi) + rand()*0.001/RAND_MAX;
184  double eta = ieta * (10.0/neta) + rand()*0.001/RAND_MAX;
185  kt = 0.0000001*(1+rand()*0.1/RAND_MAX);
186  double pminus = kt*exp(-eta);
187  double pplus = kt*exp(+eta);
188  double px = kt*sin(phi);
189  double py = kt*cos(phi);
190  //cout << kt<<" "<<eta<<" "<<phi<<"\n";
191  fj::PseudoJet mom(px,py,0.5*(pplus-pminus),0.5*(pplus+pminus));
192  jets.push_back(mom);
193  }
194  }
195  }
196 
197  fj::JetDefinition jet_def(jet_algorithm, ktR, strategy);
198 
199  for (int irepeat = 0; irepeat < repeat ; irepeat++) {
200  fj::ClusterSequence clust_seq(jets,jet_def,write);
201  if (irepeat != 0) {continue;}
202  cout << "iev "<<iev<< ": number of particles = "<< jets.size() << endl;
203  cout << "strategy used = "<< clust_seq.strategy_string()<< endl;
204 
205  // now provide some nice output...
206  if (inclkt >= 0.0) {
207  vector<fj::PseudoJet> jets = sorted_by_pt(clust_seq.inclusive_jets(inclkt));
208  for (size_t j = 0; j < jets.size(); j++) {
209  printf("%5u %15.8f %15.8f %15.8f\n",j,jets[j].rap(),jets[j].phi(),sqrt(jets[j].kt2()));
210  if (show_constituents) {
211  vector<fj::PseudoJet> const_jets = jets[j].constituents();
212  for (size_t k = 0; k < const_jets.size(); k++) {
213  printf(" jet%03u %15.8f %15.8f %15.8f\n",j,const_jets[k].rap(),
214  const_jets[k].phi(),sqrt(const_jets[k].kt2()));
215  }
216  cout << "\n\n";
217  }
218  }
219  }
220 
221  if (excln > 0) {
222  vector<fj::PseudoJet> jets = sorted_by_E(clust_seq.exclusive_jets(excln));
223 
224  cout << "Printing "<<excln<<" exclusive jets\n";
225  for (size_t j = 0; j < jets.size(); j++) {
226  printf("%5u %15.8f %15.8f %15.8f\n",
227  //j,jets[j].rap(),jets[j].phi(),sqrt(jets[j].kt2()));
228  j,jets[j].rap(),jets[j].phi(),jets[j].kt2());
229  }
230  }
231 
232  if (excld > 0.0) {
233  vector<fj::PseudoJet> jets = sorted_by_pt(clust_seq.exclusive_jets(excld));
234  cout << "Printing exclusive jets for d = "<<excld<<"\n";
235  for (size_t j = 0; j < jets.size(); j++) {
236  printf("%5u %15.8f %15.8f %15.8f\n",
237  j,jets[j].rap(),jets[j].phi(),sqrt(jets[j].kt2()));
238  }
239  }
240 
241  // useful for testing that recombination sequences are unique
242  if (unique_write) {
243  vector<int> unique_history = clust_seq.unique_history_order();
244  // construct the inverse of the above mapping
245  vector<int> inv_unique_history(clust_seq.history().size());
246  for (unsigned int i = 0; i < unique_history.size(); i++) {
247  inv_unique_history[unique_history[i]] = i;}
248 
249  for (unsigned int i = 0; i < unique_history.size(); i++) {
250  fj::ClusterSequence::history_element el =
251  clust_seq.history()[unique_history[i]];
252  int uhp1 = el.parent1>=0 ? inv_unique_history[el.parent1] : el.parent1;
253  int uhp2 = el.parent2>=0 ? inv_unique_history[el.parent2] : el.parent2;
254  printf("%7d u %15.8e %7d u %7d u\n",i,el.dij,uhp1, uhp2);
255  }
256  }
257 
258  } // irepeat
259 
260  } // iev
261 }
int main()
an example program showing how to use fastjet
Definition: 01-basic.cc:50
deals with clustering
class that is intended to hold a full definition of the jet clusterer
Class to contain pseudojets, including minimal information of use to jet-clustering routines.
Definition: PseudoJet.hh:68
the FastJet namespace
Strategy
the various options for the algorithmic strategy to adopt in clustering events with kt and cambridge ...
vector< PseudoJet > sorted_by_pt(const vector< PseudoJet > &jets)
return a vector of jets sorted into decreasing kt2
Definition: PseudoJet.cc:882
JetAlgorithm
the various families of jet-clustering algorithm
@ cambridge_algorithm
the longitudinally invariant variant of the cambridge algorithm (aka Aachen algoithm).
@ kt_algorithm
the longitudinally invariant kt algorithm
vector< PseudoJet > sorted_by_E(const vector< PseudoJet > &jets)
return a vector of jets sorted into decreasing energy
Definition: PseudoJet.cc:898