FastJet 3.4.1
GridMedianBackgroundEstimator.cc
1//FJSTARTHEADER
2// $Id$
3//
4// Copyright (c) 2005-2023, Matteo Cacciari, Gavin P. Salam and Gregory Soyez
5//
6//----------------------------------------------------------------------
7// This file is part of FastJet.
8//
9// FastJet is free software; you can redistribute it and/or modify
10// it under the terms of the GNU General Public License as published by
11// the Free Software Foundation; either version 2 of the License, or
12// (at your option) any later version.
13//
14// The algorithms that underlie FastJet have required considerable
15// development. They are described in the original FastJet paper,
16// hep-ph/0512210 and in the manual, arXiv:1111.6097. If you use
17// FastJet as part of work towards a scientific publication, please
18// quote the version you use and include a citation to the manual and
19// optionally also to hep-ph/0512210.
20//
21// FastJet is distributed in the hope that it will be useful,
22// but WITHOUT ANY WARRANTY; without even the implied warranty of
23// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24// GNU General Public License for more details.
25//
26// You should have received a copy of the GNU General Public License
27// along with FastJet. If not, see <http://www.gnu.org/licenses/>.
28//----------------------------------------------------------------------
29//FJENDHEADER
30
31
32#include "fastjet/tools/GridMedianBackgroundEstimator.hh"
33using namespace std;
34
35FASTJET_BEGIN_NAMESPACE // defined in fastjet/internal/base.hh
36
37
38//----------------------------------------------------------------------
39// setting a new event
40//----------------------------------------------------------------------
41// tell the background estimator that it has a new event, composed
42// of the specified particles.
43void GridMedianBackgroundEstimator::set_particles(const vector<PseudoJet> & particles) {
44 vector<double> scalar_pt(n_tiles(), 0.0);
45
46 assert(all_tiles_equal_area());
47 //assert(n_good_tiles() == n_tiles()); // not needed now that we have an implementation
48
49 _cached_estimate.reset();
50 _cached_estimate.set_has_sigma(true);
51 _cached_estimate.set_mean_area(mean_tile_area());
52
53 // check if we need to compute only rho or both rho and rho_m
54 if (_enable_rho_m){
55 // both rho and rho_m
56 //
57 // this requires a few other variables
58 vector<double> scalar_dt(n_tiles(), 0.0);
59 double pt, dt;
60 for (unsigned i = 0; i < particles.size(); i++) {
61 int j = tile_index(particles[i]);
62 if (j >= 0){
63 pt = particles[i].pt();
64 dt = particles[i].mt() - pt;
65 if (_rescaling_class == 0){
66 scalar_pt[j] += pt;
67 scalar_dt[j] += dt;
68 } else {
69 double r = (*_rescaling_class)(particles[i]);
70 scalar_pt[j] += pt/r;
71 scalar_dt[j] += dt/r;
72 }
73 }
74 }
75 // sort things for _percentile
76 sort(scalar_dt.begin(), scalar_dt.end());
77
78 // compute rho_m and sigma_m (see comment below for the
79 // normaliosation of sigma)
80 double p50 = _percentile(scalar_dt, 0.5);
81 _cached_estimate.set_has_rho_m(true);
82 _cached_estimate.set_rho_m(p50 / mean_tile_area());
83 _cached_estimate.set_sigma_m((p50-_percentile(scalar_dt, (1.0-0.6827)/2.0))/sqrt(mean_tile_area()));
84 } else {
85 // only rho
86 //fill(_scalar_pt.begin(), _scalar_pt.end(), 0.0);
87 for (unsigned i = 0; i < particles.size(); i++) {
88 int j = tile_index(particles[i]);
89 if (j >= 0){
90 if (_rescaling_class == 0){
91 scalar_pt[j] += particles[i].pt();
92 } else {
93 scalar_pt[j] += particles[i].pt()/(*_rescaling_class)(particles[i]);
94 }
95 }
96 }
97 }
98
99 // if there are some "bad" tiles, then we need to exclude them from
100 // the calculation of the median. We'll do this by condensing the
101 // scalar_pt vector down to just the values for the tiles that are
102 // good.
103 //
104 // tested answers look right in "issue" 2014-08-08-testing-rect-grid
105 if (n_good_tiles() != n_tiles()) {
106 int newn = 0;
107 for (unsigned i = 0; i < scalar_pt.size(); i++) {
108 if (tile_is_good(i)) {
109 // clang gets confused with the SharedPtr swap if we don't
110 // have std:: here
111 std::swap(scalar_pt[i],scalar_pt[newn]);
112 newn++;
113 }
114 }
115 scalar_pt.resize(newn);
116 }
117
118 // in all cases, carry on with the computation of rho
119 //
120 // first sort
121 sort(scalar_pt.begin(), scalar_pt.end());
122
123 // then compute rho
124 //
125 // watch out: by definition, our sigma is the standard deviation of
126 // the pt density multiplied by the square root of the cell area
127 double p50 = _percentile(scalar_pt, 0.5);
128 _cached_estimate.set_rho(p50 / mean_tile_area());
129 _cached_estimate.set_sigma((p50-_percentile(scalar_pt, (1.0-0.6827)/2.0))/sqrt(mean_tile_area()));
130
131 _cache_available = true;
132}
133
134
135//----------------------------------------------------------------------
136// retrieving fundamental information
137//----------------------------------------------------------------------
138
139// get the full set of background properties
140BackgroundEstimate GridMedianBackgroundEstimator::estimate() const{
141 verify_particles_set();
142 return _cached_estimate;
143}
144
145// get the full set of background properties for a given reference jet
146BackgroundEstimate GridMedianBackgroundEstimator::estimate(const PseudoJet &jet) const{
147 verify_particles_set();
148 if (_rescaling_class == 0)
149 return _cached_estimate;
150
151 BackgroundEstimate local_estimate = _cached_estimate;
152 local_estimate.apply_rescaling_factor((*_rescaling_class)(jet));
153 return local_estimate;
154}
155
156
157// get rho, the median background density per unit area
158double GridMedianBackgroundEstimator::rho() const {
159 verify_particles_set();
160 return _cached_estimate.rho();
161}
162
163
164//----------------------------------------------------------------------
165// get sigma, the background fluctuations per unit area; must be
166// multipled by sqrt(area) to get fluctuations for a region of a
167// given area.
168double GridMedianBackgroundEstimator::sigma() const{
169 verify_particles_set();
170 return _cached_estimate.sigma();
171}
172
173//----------------------------------------------------------------------
174// get rho, the background density per unit area, locally at the
175// position of a given jet. Note that this is not const, because a
176// user may then wish to query other aspects of the background that
177// could depend on the position of the jet last used for a rho(jet)
178// determination.
179double GridMedianBackgroundEstimator::rho(const PseudoJet & jet) {
180 //verify_particles_set();
181 double rescaling = (_rescaling_class == 0) ? 1.0 : (*_rescaling_class)(jet);
182 return rescaling*rho();
183}
184
185
186//----------------------------------------------------------------------
187// get sigma, the background fluctuations per unit area, locally at
188// the position of a given jet. As for rho(jet), it is non-const.
189double GridMedianBackgroundEstimator::sigma(const PseudoJet & jet){
190 //verify_particles_set();
191 double rescaling = (_rescaling_class == 0) ? 1.0 : (*_rescaling_class)(jet);
192 return rescaling*sigma();
193}
194
195//----------------------------------------------------------------------
196// returns rho_m (particle-masses contribution to the 4-vector density)
197double GridMedianBackgroundEstimator::rho_m() const {
198 if (! _enable_rho_m){
199 throw Error("GridMediamBackgroundEstimator: rho_m requested but rho_m calculation has been disabled.");
200 }
201 verify_particles_set();
202 return _cached_estimate.rho_m();
203}
204
205
206//----------------------------------------------------------------------
207// returns sigma_m (particle-masses contribution to the 4-vector
208// density); must be multipled by sqrt(area) to get fluctuations
209// for a region of a given area.
210double GridMedianBackgroundEstimator::sigma_m() const{
211 if (! _enable_rho_m){
212 throw Error("GridMediamBackgroundEstimator: sigma_m requested but rho_m/sigma_m calculation has been disabled.");
213 }
214 verify_particles_set();
215 return _cached_estimate.sigma_m();
216}
217
218//----------------------------------------------------------------------
219// returns rho_m locally at the position of a given jet. As for
220// rho(jet), it is non-const.
221double GridMedianBackgroundEstimator::rho_m(const PseudoJet & jet) {
222 //verify_particles_set();
223 double rescaling = (_rescaling_class == 0) ? 1.0 : (*_rescaling_class)(jet);
224 return rescaling*rho_m();
225}
226
227
228//----------------------------------------------------------------------
229// returns sigma_m locally at the position of a given jet. As for
230// rho(jet), it is non-const.
231double GridMedianBackgroundEstimator::sigma_m(const PseudoJet & jet){
232 //verify_particles_set();
233 double rescaling = (_rescaling_class == 0) ? 1.0 : (*_rescaling_class)(jet);
234 return rescaling*sigma_m();
235}
236
237//----------------------------------------------------------------------
238// verify that particles have been set and throw an error if not
239void GridMedianBackgroundEstimator::verify_particles_set() const {
240 if (!_cache_available) throw Error("GridMedianBackgroundEstimator::rho() or sigma() called without particles having been set");
241}
242
243
244//----------------------------------------------------------------------
245// description
246//----------------------------------------------------------------------
247string GridMedianBackgroundEstimator::description() const {
248 ostringstream desc;
249 desc << "GridMedianBackgroundEstimator, with " << RectangularGrid::description();
250 return desc.str();
251}
252
253
254//----------------------------------------------------------------------
255// configuring the behaviour
256//----------------------------------------------------------------------
257// Set a pointer to a class that calculates the rescaling factor as
258// a function of the jet (position). Note that the rescaling factor
259// is used both in the determination of the "global" rho (the pt/A
260// of each jet is divided by this factor) and when asking for a
261// local rho (the result is multiplied by this factor).
262//
263// The BackgroundRescalingYPolynomial class can be used to get a
264// rescaling that depends just on rapidity.
265//
266// Note that this has to be called BEFORE any attempt to do an
267// actual computation
268void GridMedianBackgroundEstimator::set_rescaling_class(const FunctionOfPseudoJet<double> * rescaling_class_in) {
269 // The rescaling is taken into account when particles are set. So
270 // you need to call set_particles again if you set the rescaling
271 // class. We thus warn if there are already some available
272 // particles
273 if (_cache_available)
274 _warning_rescaling.warn("GridMedianBackgroundEstimator::set_rescaling_class(): trying to set the rescaling class when there are already particles that have been set is dangerous: the rescaling will not affect the already existing particles resulting in mis-estimation of rho. You need to call set_particles() again before proceeding with any background estimation.");
275
276 BackgroundEstimatorBase::set_rescaling_class(rescaling_class_in);
277}
278
279
280
281FASTJET_END_NAMESPACE // defined in fastjet/internal/base.hh
/// a class that holds the result of the calculation
void apply_rescaling_factor(double rescaling_factor)
apply a rescaling factor (to rho, rho_m, sigma, sigma_m)
base class corresponding to errors that can be thrown by FastJet
Definition: Error.hh:52
Class to contain pseudojets, including minimal information of use to jet-clustering routines.
Definition: PseudoJet.hh:68