FastJet 3.0.2
|
00001 //STARTHEADER 00002 // $Id: DnnPlane.cc 2577 2011-09-13 15:11:38Z salam $ 00003 // 00004 // Copyright (c) 2005-2011, Matteo Cacciari, Gavin P. Salam and Gregory Soyez 00005 // 00006 //---------------------------------------------------------------------- 00007 // This file is part of FastJet. 00008 // 00009 // FastJet is free software; you can redistribute it and/or modify 00010 // it under the terms of the GNU General Public License as published by 00011 // the Free Software Foundation; either version 2 of the License, or 00012 // (at your option) any later version. 00013 // 00014 // The algorithms that underlie FastJet have required considerable 00015 // development and are described in hep-ph/0512210. If you use 00016 // FastJet as part of work towards a scientific publication, please 00017 // include a citation to the FastJet paper. 00018 // 00019 // FastJet is distributed in the hope that it will be useful, 00020 // but WITHOUT ANY WARRANTY; without even the implied warranty of 00021 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00022 // GNU General Public License for more details. 00023 // 00024 // You should have received a copy of the GNU General Public License 00025 // along with FastJet. If not, see <http://www.gnu.org/licenses/>. 00026 //---------------------------------------------------------------------- 00027 //ENDHEADER 00028 00029 00030 #ifndef DROP_CGAL // in case we do not have the code for CGAL 00031 00032 #include<set> 00033 #include<list> 00034 #include "fastjet/internal/DnnPlane.hh" 00035 using namespace std; 00036 00037 FASTJET_BEGIN_NAMESPACE // defined in fastjet/internal/base.hh 00038 00039 00040 /// Initialiser from a set of points on an Eta-Phi plane, where both 00041 /// eta and phi can have arbitrary ranges 00042 DnnPlane::DnnPlane(const vector<EtaPhi> & input_points, 00043 const bool & verbose ) { 00044 00045 _verbose = verbose; 00046 int n = input_points.size(); 00047 00048 // construct Voronoi diagram in such a way as to get the vertex handles 00049 // and remember to set CGAL info with the index of the vertex 00050 SuperVertex sv; 00051 for (int i = 0; i < n; i++) { 00052 sv.vertex = 00053 _TR.insert(Point(input_points[i].first, input_points[i].second)); 00054 00055 // we are not up to dealing with coincident vertices, so make 00056 // sure the user knows! 00057 _CrashIfVertexPresent(sv.vertex, i); 00058 00059 // we need to assicate an index to each vertex -- thus when we get 00060 // a vertex (e.g. as a nearest neighbour) from CGAL, we will be 00061 // able to figure out which particle it corresponded to. 00062 sv.vertex->info() = i; 00063 _supervertex.push_back(sv); 00064 } 00065 00066 // label infinite vertex info with negative index 00067 _TR.infinite_vertex()->info() = INFINITE_VERTEX; 00068 00069 // set up the structure that holds nearest distances and neighbours 00070 for (int j = 0; j < n; j++) {_SetNearest(j);} 00071 00072 } 00073 00074 00075 //---------------------------------------------------------------------- 00076 /// Crashes if the given vertex handle already exists. Otherwise 00077 /// it does the bookkeeping for future such tests 00078 void DnnPlane::_CrashIfVertexPresent( 00079 const Vertex_handle & vertex, const int & its_index) { 00080 if (!_crash_on_coincidence) return; 00081 00082 // vertices that do not have the same geometric position as any 00083 // other vertex so far added have info().val() == NEW_VERTEX -- this 00084 // is ensured by the InitialisedInt class, which forms the "info" 00085 // part of our 00086 // CGAL::Triangulation_vertex_base_with_info_2<InitialisedInt,K> 00087 // 00088 // If the vertex coincides with one that already exists, then 00089 // info().val() it's info().val() will have been updated (in 00090 // DNN:DNN) to be equal to a vertex "index". 00091 if (vertex->info().val() != NEW_VERTEX) { 00092 ostringstream err; 00093 err << "ERROR in DnnPlane::_CrashIfVertexPresent" 00094 <<endl << "Point "<<its_index<<" coincides with point " 00095 <<vertex->info().val() << endl; 00096 throw DnnError(err.str()); 00097 } 00098 } 00099 00100 00101 //---------------------------------------------------------------------- 00102 /// remove the points labelled by the vector indices_to_remove, and 00103 /// add the points specified by the vector points_to_add 00104 /// (corresponding indices will be calculated automatically); the 00105 /// idea behind this routine is that the points to be added will 00106 /// somehow be close to the one or other of the points being removed 00107 /// and this can be used by the implementation to provide hints for 00108 /// inserting the new points in whatever structure it is using. In a 00109 /// kt-algorithm the points being added will be a result of a 00110 /// combination of the points to be removed -- hence the proximity 00111 /// is (more or less) guaranteed. 00112 void DnnPlane::RemoveAndAddPoints( 00113 const vector<int> & indices_to_remove, 00114 const vector<EtaPhi> & points_to_add, 00115 vector<int> & indices_added, 00116 vector<int> & indices_of_updated_neighbours) { 00117 00118 00119 // build set of UNION of Voronoi neighbours of a pair of nearest 00120 // neighbours 00121 set<int> NeighbourUnion; 00122 // later on it will be convenient to have access to a set (rather 00123 // than vector) of indices being removed 00124 set<int> indices_removed; 00125 00126 // for each of the indices to be removed add the voronoi neighbourhood to 00127 // the NeighbourUnion set. 00128 for (size_t ir = 0; ir < indices_to_remove.size(); ir++) { 00129 int index = indices_to_remove[ir]; 00130 indices_removed.insert(index); 00131 if (_verbose) cout << " Starting RemoveAndAddPoints" << endl; 00132 if (_verbose) cout << " point " << index << endl; 00133 // have a circulators that will go round the Voronoi neighbours of 00134 // _supervertex[index1].vertex 00135 Vertex_circulator vc = _TR.incident_vertices(_supervertex[index].vertex); 00136 Vertex_circulator done = vc; 00137 do { 00138 // if a neighbouring vertex not the infinite vertex, then add it 00139 // to our union of neighbouring vertices. 00140 if (_verbose) cout << "examining " << vc->info().val() << endl; 00141 if (vc->info().val() != INFINITE_VERTEX) { 00142 // NB: from it=1 onwards occasionally it might already have 00143 // been inserted -- but double insertion still leaves only one 00144 // copy in the set, so there's no problem 00145 NeighbourUnion.insert(vc->info().val()); 00146 if (_verbose) cout << "inserted " << vc->info().val() << endl; 00147 } 00148 } while (++vc != done); 00149 } 00150 00151 if (_verbose) { 00152 set<int>::iterator it = NeighbourUnion.begin(); 00153 cout << "Union of neighbours of combined points" << endl; 00154 for ( ; it != NeighbourUnion.end(); ++it ) { 00155 cout << *it << endl; 00156 } 00157 } 00158 00159 // update set, triangulation and supervertex info 00160 for (size_t ir = 0; ir < indices_to_remove.size(); ir++) { 00161 int index = indices_to_remove[ir]; 00162 00163 // NeighbourUnion should not contain the points to be removed 00164 // (because later we will assume they still exist). 00165 NeighbourUnion.erase(indices_to_remove[ir]); 00166 00167 // points to be removed should also be eliminated from the 00168 // triangulation and the supervertex structure should be updated 00169 // to reflect the fact that the points are no longer valid. 00170 _TR.remove(_supervertex[index].vertex); 00171 _supervertex[index].vertex = NULL; 00172 } 00173 00174 // add new point: give a "hint" to the inserter that 00175 // the new point should be added close to old points -- the easiest way 00176 // of getting this is to take a point from the NeighbourUnion AFTER we have 00177 // removed point1, point2, and to get one of its incident faces. 00178 // 00179 // This hinting improves speed by c. 25% for 10^4 points because it 00180 // avoids the need for a costly (sqrt{N}) location step (at least 00181 // with a non-hierarchical triangulation -- with a hierarchical one, 00182 // this step could be done away with, though there will still be a 00183 // cost of O(ln N) to pay. 00184 // 00185 // For some reason inserting the point before the two removals 00186 // slows things down by c. 25%. This importance of the order 00187 // is not understood. 00188 // 00189 // At some point it might be worth trying to select the "nearest" 00190 // of the various points in the neighbour union to avoid large 00191 // steps in cases where we have 0..2pi periodicity and the first member 00192 // of the neighbour union happens to be on the wrong side. 00193 Face_handle face; 00194 if (indices_to_remove.size() > 0) { 00195 // face can only be found if there were points to remove in first place 00196 face = _TR.incident_faces( 00197 _supervertex[*NeighbourUnion.begin()].vertex);} 00198 // make sure the output arrays are empty 00199 indices_added.clear(); 00200 indices_of_updated_neighbours.clear(); 00201 for (size_t ia = 0; ia < points_to_add.size(); ia++) { 00202 SuperVertex sv; 00203 _supervertex.push_back(sv); 00204 int index = _supervertex.size()-1; 00205 indices_added.push_back(index); 00206 00207 if (indices_to_remove.size() > 0) { 00208 // be careful of using face (for location hinting) only when it exists 00209 _supervertex[index].vertex = _TR.insert(Point(points_to_add[ia].first, 00210 points_to_add[ia].second),face);} 00211 else { 00212 _supervertex[index].vertex = _TR.insert(Point(points_to_add[ia].first, 00213 points_to_add[ia].second)); 00214 } 00215 // we are not up to dealing with coincident vertices, so make 00216 // sure the user knows! 00217 _CrashIfVertexPresent(_supervertex[index].vertex, index); 00218 _supervertex[index].vertex->info() = index; 00219 00220 // first find nearest neighbour of "newpoint" (shorthand for 00221 // _supervertex[index].vertex); while we're at it, for each of the 00222 // voronoi neighbours, "D", of newpoint, examine whether newpoint is 00223 // closer to "D" than D's current nearest neighbour -- when this 00224 // occurs, put D into indices_of_updated_neighbours. 00225 // 00226 // manually put newpoint on indices_of_updated_neighbours 00227 indices_of_updated_neighbours.push_back(index); 00228 _SetAndUpdateNearest(index, indices_of_updated_neighbours); 00229 } 00230 00231 // for Voronoi neighbours j of any of the removed points for which 00232 // one of those removed points was the nearest neighbour, 00233 // redetermine the nearest neighbour of j and add j onto the vector 00234 // of indices_of_updated_neighbours. 00235 set<int>::iterator it2 = NeighbourUnion.begin(); 00236 for ( ; it2 != NeighbourUnion.end(); ++it2 ) { 00237 int j = *it2; 00238 // the if avoids the vertex at infinity, which gets a negative index 00239 if( j != INFINITE_VERTEX ) { 00240 // this is where we check if the nearest neighbour of j was one 00241 // of the removed points 00242 if (indices_removed.count(_supervertex[j].NNindex)) { 00243 if (_verbose) cout << "j " << j << endl; 00244 _SetNearest(j); 00245 indices_of_updated_neighbours.push_back(j); 00246 if (_verbose) cout << "NN of " << j << " : " 00247 << _supervertex[j].NNindex 00248 << ", dist = " << _supervertex[j].NNdistance <<endl; 00249 } 00250 } 00251 } 00252 00253 } 00254 00255 00256 //---------------------------------------------------------------------- 00257 /// Determines the index and distance of the nearest neighbour to 00258 /// point j and puts the information into the _supervertex entry for j. 00259 void DnnPlane::_SetNearest (const int & j) { 00260 Vertex_handle current = _supervertex[j].vertex; 00261 Vertex_circulator vc = _TR.incident_vertices(current); 00262 Vertex_circulator done = vc; 00263 double dist; 00264 double mindist = HUGE_DOUBLE; // change this to "HUGE" or max_double? 00265 Vertex_handle nearest = _TR.infinite_vertex(); 00266 00267 // when there is only one finite point left in the triangulation, 00268 // there are no triangles. Presumably this is why voronoi returns 00269 // NULL for the incident vertex circulator. Check if this is 00270 // happening before circulating over it... (Otherwise it crashes 00271 // when looking for neighbours of last point) 00272 if (vc != NULL) do { 00273 if ( vc->info().val() != INFINITE_VERTEX) { 00274 // find distance between j and its Voronoi neighbour (vc) 00275 if (_verbose) cout << current->info().val() << " " << vc->info().val() << endl; 00276 dist = _euclid_distance(current->point(), vc->point()); 00277 // check if j is closer to vc than vc's currently registered 00278 // nearest neighbour (and update things if it is) 00279 if (dist < mindist) { 00280 mindist = dist; nearest = vc; 00281 if (_verbose) cout << "nearer "; 00282 } 00283 if (_verbose) cout << vc->point() << "; "<< dist << endl; 00284 } 00285 } while (++vc != done); // move on to next Voronoi neighbour 00286 // set j's supervertex info about nearest neighbour 00287 _supervertex[j].NNindex = nearest->info().val(); 00288 _supervertex[j].NNdistance = mindist; 00289 } 00290 00291 //---------------------------------------------------------------------- 00292 /// Determines and stores the nearest neighbour of j, and where 00293 /// necessary update the nearest-neighbour info of Voronoi neighbours 00294 /// of j; 00295 /// 00296 /// For each voronoi neighbour D of j if the distance between j and D 00297 /// is less than D's own nearest neighbour, then update the 00298 /// nearest-neighbour info in D; push D's index onto 00299 /// indices_of_updated_neighbours 00300 /// 00301 /// Note that j is NOT pushed onto indices_of_updated_neighbours -- 00302 /// if you want it there, put it there yourself. 00303 /// 00304 /// NB: note that we have _SetAndUpdateNearest as a completely 00305 /// separate routine from _SetNearest because we want to 00306 /// use one single ciruclation over voronoi neighbours to find the 00307 /// nearest neighbour and to update the voronoi neighbours if need 00308 /// be. 00309 void DnnPlane::_SetAndUpdateNearest( 00310 const int & j, 00311 vector<int> & indices_of_updated_neighbours) { 00312 00313 Vertex_handle current = _supervertex[j].vertex; 00314 Vertex_circulator vc = _TR.incident_vertices(current); 00315 Vertex_circulator done = vc; 00316 double dist; 00317 double mindist = HUGE_DOUBLE; // change this to "HUGE" or max_double? 00318 Vertex_handle nearest = _TR.infinite_vertex(); 00319 00320 // when there is only one finite point left in the triangulation, 00321 // there are no triangles. Presumably this is why voronoi returns 00322 // NULL for the incident vertex circulator. Check if this is 00323 // happening before circulating over it... (Otherwise it crashes 00324 // when looking for neighbours of last point) 00325 if (vc != NULL) do { 00326 if (vc->info().val() != INFINITE_VERTEX) { 00327 if (_verbose) cout << current->info().val() << " " << vc->info().val() << endl; 00328 // find distance between j and its Voronoi neighbour (vc) 00329 dist = _euclid_distance(current->point(), vc->point()); 00330 // update the mindist if we are closer than anything found so far 00331 if (dist < mindist) { 00332 mindist = dist; nearest = vc; 00333 if (_verbose) cout << "nearer "; 00334 } 00335 // find index corresponding to vc for easy manipulation 00336 int vcindx = vc->info().val(); 00337 if (_verbose) cout << vc->point() << "; "<< dist << endl; 00338 // check if j is closer to vc than vc's currently registered 00339 // nearest neighbour (and update things if it is) 00340 if (dist < _supervertex[vcindx].NNdistance) { 00341 if (_verbose) cout << vcindx << "'s NN becomes " << current->info().val() << endl; 00342 _supervertex[vcindx].NNdistance = dist; 00343 _supervertex[vcindx].NNindex = j; 00344 indices_of_updated_neighbours.push_back(vcindx); 00345 } 00346 } 00347 } while (++vc != done); // move on to next Voronoi neighbour 00348 // set j's supervertex info about nearest neighbour 00349 _supervertex[j].NNindex = nearest->info().val(); 00350 _supervertex[j].NNdistance = mindist; 00351 } 00352 00353 FASTJET_END_NAMESPACE 00354 00355 #endif // DROP_CGAL