|
fastjet 2.4.5
|
class for carrying out a voronoi area calculation on a set of initial vectors More...
Public Member Functions | |
| VoronoiAreaCalc (const vector< PseudoJet >::const_iterator &, const vector< PseudoJet >::const_iterator &, double effective_R) | |
| constructor that takes a range of a vector together with the effective radius for the intersection of discs with voronoi cells | |
| double | area (int index) const |
| return the area of the particle associated with the given index | |
Private Member Functions | |
| double | edge_circle_intersection (const Point &p0, const GraphEdge &edge) |
| compute the intersection of one triangle with the circle the area is returned | |
| double | circle_area (const double d12_2, double d01_2, double d02_2) |
| get the area of a circle of radius R centred on the point 0 with 1 and 2 on each "side" of the arc. | |
Private Attributes | |
| std::vector< double > | _areas |
| areas, numbered as jets | |
| double | _effective_R |
| effective radius | |
| double | _effective_R_squared |
| effective radius squared | |
class for carrying out a voronoi area calculation on a set of initial vectors
Definition at line 49 of file ClusterSequenceVoronoiArea.cc.
| fastjet::VAC::VoronoiAreaCalc | ( | const vector< PseudoJet >::const_iterator & | jet_begin, |
| const vector< PseudoJet >::const_iterator & | jet_end, | ||
| double | effective_R | ||
| ) |
constructor that takes a range of a vector together with the effective radius for the intersection of discs with voronoi cells
Definition at line 172 of file ClusterSequenceVoronoiArea.cc.
References fastjet::VoronoiDiagramGenerator::generateVoronoi(), fastjet::VoronoiDiagramGenerator::getNext(), fastjet::d0::inline_maths::min(), fastjet::d0::inline_maths::phi(), fastjet::pi, fastjet::GraphEdge::point1, fastjet::GraphEdge::point2, fastjet::VoronoiDiagramGenerator::resetIterator(), and twopi.
{
assert(effective_R < 0.5*pi);
vector<Point> voronoi_particles;
vector<int> voronoi_indices;
_effective_R = effective_R;
_effective_R_squared = effective_R*effective_R;
double minrap = numeric_limits<double>::max();
double maxrap = -minrap;
unsigned int n_tot = 0, n_added = 0;
// loop over jets and create the triangulation, as well as cross-referencing
// info
for (vector<PseudoJet>::const_iterator jet_it = jet_begin;
jet_it != jet_end; jet_it++) {
_areas.push_back(0.0);
if ((jet_it->perp2()) != 0.0 || (jet_it->E() != jet_it->pz())){
// generate the corresponding point
double rap = jet_it->rap(), phi = jet_it->phi();
voronoi_particles.push_back(Point(rap, phi));
voronoi_indices.push_back(n_tot);
n_added++;
// insert a copy of the point if it falls within 2*_R_effective
// of the 0,2pi borders (because we are interested in any
// voronoi edge within _R_effective of the other border)
if (phi < 2*_effective_R) {
voronoi_particles.push_back(Point(rap,phi+twopi));
voronoi_indices.push_back(-1);
n_added++;
} else if (twopi-phi < 2*_effective_R) {
voronoi_particles.push_back(Point(rap,phi-twopi));
voronoi_indices.push_back(-1);
n_added++;
}
// track the rapidity range
maxrap = max(maxrap,rap);
minrap = min(minrap,rap);
}
n_tot++;
}
// allow for 0-particle case in graceful way
if (n_added == 0) return;
// assert(n_added > 0); // old (pre 2.4) non-graceful exit
// add extreme cases (corner particles):
double max_extend = 2*max(maxrap-minrap+4*_effective_R, twopi+8*_effective_R);
voronoi_particles.push_back(Point(0.5*(minrap+maxrap)-max_extend, pi));
voronoi_particles.push_back(Point(0.5*(minrap+maxrap)+max_extend, pi));
voronoi_particles.push_back(Point(0.5*(minrap+maxrap), pi-max_extend));
voronoi_particles.push_back(Point(0.5*(minrap+maxrap), pi+max_extend));
// Build the VD
VoronoiDiagramGenerator vdg;
vdg.generateVoronoi(&voronoi_particles,
0.5*(minrap+maxrap)-max_extend, 0.5*(minrap+maxrap)+max_extend,
pi-max_extend, pi+max_extend);
vdg.resetIterator();
GraphEdge *e=NULL;
unsigned int v_index;
int p_index;
vector<PseudoJet>::const_iterator jet;
while(vdg.getNext(&e)){
v_index = e->point1;
if (v_index<n_added){ // this removes the corner particles
p_index = voronoi_indices[v_index];
if (p_index!=-1){ // this removes the copies
jet = jet_begin+voronoi_indices[v_index];
_areas[p_index]+=
edge_circle_intersection(voronoi_particles[v_index], *e);
}
}
v_index = e->point2;
if (v_index<n_added){ // this removes the corner particles
p_index = voronoi_indices[v_index];
if (p_index!=-1){ // this removes the copies
jet = jet_begin+voronoi_indices[v_index];
_areas[p_index]+=
edge_circle_intersection(voronoi_particles[v_index], *e);
}
}
}
}
| double fastjet::ClusterSequenceVoronoiArea::VoronoiAreaCalc::area | ( | int | index | ) | const [inline] |
return the area of the particle associated with the given index
Definition at line 60 of file ClusterSequenceVoronoiArea.cc.
{return _areas[index];};
| double fastjet::ClusterSequenceVoronoiArea::VoronoiAreaCalc::circle_area | ( | const double | d12_2, |
| double | d01_2, | ||
| double | d02_2 | ||
| ) | [inline, private] |
get the area of a circle of radius R centred on the point 0 with 1 and 2 on each "side" of the arc.
dij is the distance between point i and point j and all distances are squared
Definition at line 77 of file ClusterSequenceVoronoiArea.cc.
References fastjet::d0::inline_maths::min().
{
return 0.5*_effective_R_squared
*acos(min(1.0,(d01_2+d02_2-d12_2)/(2*sqrt(d01_2*d02_2))));
}
| double fastjet::VAC::edge_circle_intersection | ( | const Point & | p0, |
| const GraphEdge & | edge | ||
| ) | [private] |
compute the intersection of one triangle with the circle the area is returned
Definition at line 88 of file ClusterSequenceVoronoiArea.cc.
References fastjet::norm(), fastjet::scalar_product(), fastjet::vector_product(), fastjet::Point::x, fastjet::GraphEdge::x1, fastjet::GraphEdge::x2, fastjet::Point::y, fastjet::GraphEdge::y1, and fastjet::GraphEdge::y2.
{
Point p1(edge.x1-p0.x, edge.y1-p0.y);
Point p2(edge.x2-p0.x, edge.y2-p0.y);
Point pdiff = p2-p1;
//fprintf(stdout, "\tpt(%f,%f)\n", p0.x, p0.y);
double cross = vector_product(p1, p2);
double d12_2 = norm(pdiff);
double d01_2 = norm(p1);
double d02_2 = norm(p2);
// compute intersections between edge line and circle
double delta = d12_2*_effective_R_squared - cross*cross;
// if no intersection, area=area_circle
if (delta<=0){
return circle_area(d12_2, d01_2, d02_2);
}
// we'll only need delta's sqrt now
delta = sqrt(delta);
// b is the projection of 01 onto 12
double b = scalar_product(pdiff, p1);
// intersections with the circle:
// we compute the "coordinate along the line" of the intersection
// with t=0 (1) corresponding to p1 (p2)
// points with 0<t<1 are within the circle others are outside
// positive intersection
double tp = (delta-b)/d12_2;
// if tp is negative, tm also => inters = circle
if (tp<0)
return circle_area(d12_2, d01_2, d02_2);
// we need the second intersection
double tm = -(delta+b)/d12_2;
// if tp<1, it lies in the circle
if (tp<1){
// if tm<0, the segment has one intersection
// with the circle at p (t=tp)
// the area is a triangle from 1 to p
// then a circle from p to 2
// several tricks can be used:
// - the area of the triangle is tp*area triangle
// - the lenght for the circle are easily obtained
if (tm<0)
return tp*0.5*fabs(cross)
+circle_area((1-tp)*(1-tp)*d12_2, _effective_R_squared, d02_2);
// now, 0 < tm < tp < 1
// the segment intersects twice the circle
// area = 2 cirles at ends + a triangle in the middle
// again, simplifications are staightforward
return (tp-tm)*0.5*fabs(cross)
+ circle_area(tm*tm*d12_2, d01_2, _effective_R_squared)
+ circle_area((1-tp)*(1-tp)*d12_2, _effective_R_squared, d02_2);
}
// now, we have tp>1
// if in addition tm>1, intersectino is a circle
if (tm>1)
return circle_area(d12_2, d01_2, d02_2);
// if tm<0, the triangle is inside the circle
if (tm<0)
return 0.5*fabs(cross);
// otherwise, only the "tm point" is on the segment
// area = circle from 1 to m and triangle from m to 2
return (1-tm)*0.5*fabs(cross)
+circle_area(tm*tm*d12_2, d01_2, _effective_R_squared);
}
std::vector<double> fastjet::ClusterSequenceVoronoiArea::VoronoiAreaCalc::_areas [private] |
areas, numbered as jets
Definition at line 60 of file ClusterSequenceVoronoiArea.cc.
double fastjet::ClusterSequenceVoronoiArea::VoronoiAreaCalc::_effective_R [private] |
effective radius
Definition at line 64 of file ClusterSequenceVoronoiArea.cc.
effective radius squared
Definition at line 65 of file ClusterSequenceVoronoiArea.cc.
1.7.4