|
fastjet 2.4.5
|
#include "fastjet/PseudoJet.hh"#include "fastjet/ClusterSequence.hh"#include <iostream>#include <sstream>#include <valarray>#include <vector>#include <cstdio>#include <cstdlib>#include <cstddef>#include "CmdLine.hh"
Go to the source code of this file.
Functions | |
| double | pow2 (const double x) |
| int | main (int argc, char **argv) |
| a program to test and time the kt algorithm as implemented in fastjet | |
| int main | ( | int | argc, |
| char ** | argv | ||
| ) |
a program to test and time the kt algorithm as implemented in fastjet
Definition at line 99 of file fastjet_timing.cc.
References CmdLine::all_options_used(), Best, fastjet::cambridge_algorithm, fastjet::ClusterSequence::constituents(), CmdLine::double_val(), fastjet::ClusterSequence::exclusive_jets(), fastjet::ClusterSequence::history(), fastjet::ClusterSequence::inclusive_jets(), CmdLine::int_val(), fastjet::kt_algorithm, fastjet::d0::inline_maths::phi(), pow2(), CmdLine::present(), fastjet::PseudoJet::rap(), fastjet::sorted_by_E(), fastjet::sorted_by_pt(), fastjet::ClusterSequence::strategy_string(), twopi, and fastjet::ClusterSequence::unique_history_order().
{
CmdLine cmdline(argc,argv);
// allow the use to specify the fj::Strategy either through the
// -clever or the -strategy options (both will take numerical
// values); the latter will override the former.
fj::Strategy strategy = fj::Strategy(cmdline.int_val("-strategy",
cmdline.int_val("-clever", fj::Best)));
int repeat = cmdline.int_val("-repeat",1);
int combine = cmdline.int_val("-combine",1);
bool write = cmdline.present("-write");
bool unique_write = cmdline.present("-unique_write");
bool hydjet = cmdline.present("-hydjet");
double ktR = cmdline.double_val("-r",1.0);
double inclkt = cmdline.double_val("-incl",-1.0);
int excln = cmdline.int_val ("-excln",-1);
double excld = cmdline.double_val("-excld",-1.0);
double etamax = cmdline.double_val("-etamax",1.0e305);
bool show_constituents = cmdline.present("-const");
bool massless = cmdline.present("-massless");
int nev = cmdline.int_val("-nev",1);
bool add_dense_coverage = cmdline.present("-dense");
// The following option causes the Cambridge algo to be used.
// Note that currently the only output that works sensibly here is
// "-incl 0"
fj::JetAlgorithm jet_algorithm;
if (cmdline.present("-cam")) {
jet_algorithm = fj::cambridge_algorithm;
} else {
jet_algorithm = fj::kt_algorithm;
}
if (!cmdline.all_options_used()) {cerr <<
"Error: some options were not recognized"<<endl;
exit(-1);}
for (int iev = 0; iev < nev; iev++) {
vector<fj::PseudoJet> jets;
string line;
int ndone = 0;
while (getline(cin, line)) {
//cout << line<<endl;
istringstream linestream(line);
if (line == "#END") {
ndone += 1;
if (ndone == combine) {break;}
}
if (line.substr(0,1) == "#") {continue;}
valarray<double> fourvec(4);
if (hydjet) {
// special reading from hydjet.txt event record (though actually
// this is supposed to be a standard pythia event record, so
// being able to read from it is perhaps not so bad an idea...)
int ii, istat,id,m1,m2,d1,d2;
double mass;
linestream >> ii>> istat >> id >> m1 >> m2 >> d1 >> d2
>> fourvec[0] >> fourvec[1] >> fourvec[2] >> mass;
// current file contains mass of particle as 4th entry
if (istat == 1) {
fourvec[3] = sqrt(+pow2(fourvec[0])+pow2(fourvec[1])
+pow2(fourvec[2])+pow2(mass));
}
} else {
if (massless) {
linestream >> fourvec[0] >> fourvec[1] >> fourvec[2];
fourvec[3] = sqrt(pow2(fourvec[0])+pow2(fourvec[1])+pow2(fourvec[2]));}
else {
linestream >> fourvec[0] >> fourvec[1] >> fourvec[2] >> fourvec[3];
}
}
fj::PseudoJet psjet(fourvec);
if (abs(psjet.rap() < etamax)) {jets.push_back(psjet);}
}
// add a fake underlying event which is very soft, uniformly distributed
// in eta,phi so as to allow one to reconstruct the area that is associated
// with each jet.
if (add_dense_coverage) {
srand(2);
int nphi = 60;
int neta = 100;
double kt = 1e-1;
for (int iphi = 0; iphi<nphi; iphi++) {
for (int ieta = -neta; ieta<neta+1; ieta++) {
double phi = (iphi+0.5) * (fj::twopi/nphi) + rand()*0.001/RAND_MAX;
double eta = ieta * (10.0/neta) + rand()*0.001/RAND_MAX;
kt = 0.0000001*(1+rand()*0.1/RAND_MAX);
double pminus = kt*exp(-eta);
double pplus = kt*exp(+eta);
double px = kt*sin(phi);
double py = kt*cos(phi);
//cout << kt<<" "<<eta<<" "<<phi<<"\n";
fj::PseudoJet mom(px,py,0.5*(pplus-pminus),0.5*(pplus+pminus));
jets.push_back(mom);
}
}
}
fj::JetDefinition jet_def(jet_algorithm, ktR, strategy);
for (int irepeat = 0; irepeat < repeat ; irepeat++) {
fj::ClusterSequence clust_seq(jets,jet_def,write);
if (irepeat != 0) {continue;}
cout << "iev "<<iev<< ": number of particles = "<< jets.size() << endl;
cout << "strategy used = "<< clust_seq.strategy_string()<< endl;
// now provide some nice output...
if (inclkt >= 0.0) {
vector<fj::PseudoJet> jets = sorted_by_pt(clust_seq.inclusive_jets(inclkt));
for (size_t j = 0; j < jets.size(); j++) {
printf("%5u %15.8f %15.8f %15.8f\n",j,jets[j].rap(),jets[j].phi(),sqrt(jets[j].kt2()));
if (show_constituents) {
vector<fj::PseudoJet> const_jets = clust_seq.constituents(jets[j]);
for (size_t k = 0; k < const_jets.size(); k++) {
printf(" jet%03u %15.8f %15.8f %15.8f\n",j,const_jets[k].rap(),
const_jets[k].phi(),sqrt(const_jets[k].kt2()));
}
cout << "\n\n";
}
}
}
if (excln > 0) {
vector<fj::PseudoJet> jets = sorted_by_E(clust_seq.exclusive_jets(excln));
cout << "Printing "<<excln<<" exclusive jets\n";
for (size_t j = 0; j < jets.size(); j++) {
printf("%5u %15.8f %15.8f %15.8f\n",
//j,jets[j].rap(),jets[j].phi(),sqrt(jets[j].kt2()));
j,jets[j].rap(),jets[j].phi(),jets[j].kt2());
}
}
if (excld > 0.0) {
vector<fj::PseudoJet> jets = sorted_by_pt(clust_seq.exclusive_jets(excld));
cout << "Printing exclusive jets for d = "<<excld<<"\n";
for (size_t j = 0; j < jets.size(); j++) {
printf("%5u %15.8f %15.8f %15.8f\n",
j,jets[j].rap(),jets[j].phi(),sqrt(jets[j].kt2()));
}
}
// useful for testing that recombination sequences are unique
if (unique_write) {
vector<int> unique_history = clust_seq.unique_history_order();
// construct the inverse of the above mapping
vector<int> inv_unique_history(clust_seq.history().size());
for (unsigned int i = 0; i < unique_history.size(); i++) {
inv_unique_history[unique_history[i]] = i;}
for (unsigned int i = 0; i < unique_history.size(); i++) {
fj::ClusterSequence::history_element el =
clust_seq.history()[unique_history[i]];
int uhp1 = el.parent1>=0 ? inv_unique_history[el.parent1] : el.parent1;
int uhp2 = el.parent2>=0 ? inv_unique_history[el.parent2] : el.parent2;
printf("%7d u %15.8e %7d u %7d u\n",i,el.dij,uhp1, uhp2);
}
}
} // irepeat
} // iev
}
| double pow2 | ( | const double | x | ) | [inline] |
1.7.4